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ABSTRACT

When exposed to environmental noise, speakers adjust their speech
production to maintain intelligible communication. This phe-
nomenon, called Lombard effect (LE), is known to considerably
impact the performance of automatic speech recognition (ASR) sys-
tems. In this study, novel frequency and cepstral domain equaliza-
tions that reduce the impact of LE on ASR are proposed. Short-time
spectra of LE speech are transformed towards neutral ASR models
in a maximum likelihood fashion. Dynamics of cepstral coefficients
are normalized to a constant range using quantile estimations. The
algorithms are incorporated in a recognizer employing a codebook
of noisy acoustic models. In a recognition task on connected Czech
digits presented in various levels of background car noise, the re-
sulting system provides an absolute reduction in word error rate
(WER) on 10 dB SNR data of 8.7% and 37.7% for female neutral
and LE speech, and of 8.7% and 32.8% for male neutral and LE
speech when compared to the baseline system employing perceptual
linear prediction (PLP) coefficients and cepstral mean and variance
normalization.

Index Terms— Lombard effect, speech recognition, frequency
warping, cepstral compensation, codebook of noisy models

1. INTRODUCTION

Lombard effect (LE) is known to affect a number of speech param-
eters, such as voice intensity, spectral slope of glottal waveforms,
formant locations and bandwidths, energy ratios in voiced/unvoiced
phones, and others [1]–[3]. Since current ASR features are mostly
in the form of cepstral coefficients extracted from short-time spec-
tra, especially formant and spectral slope variations will directly im-
pact ASR performance, introducing a degrading mismatch between
the processed speech and neutral trained acoustic models. Efforts
to increase ASR resistance to LE span areas of robust front-end de-
sign, equalization of LE speech features towards neutral, improved
training methods, and acoustic model adjustments and adaptation;
see [2], [3] for overviews. A majority of past studies assume that
there is a sufficient amount of labeled LE data available for estimat-
ing fixed signal equalization/model adaptation parameters and that
the level of LE (a ratio of speech production variations introduced
by the environmental noise) will not change over time. This may
be unrealistic in real world applications where the characteristics of
noise and the level of LE may vary continuously.

This study presents novel frequency and cepstral domain trans-
formations for equalizing LE speech samples towards neutral ASR
models in order to improve recognition performance. In contrast
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to methods previously developed, the transformation parameters are
estimated on-the-fly from the incoming speech signal and require
neither a priori knowledge about the level of LE, nor availability of
labeled training/adaptation LE samples.

The frequency domain transformation is conducted in a similar
manner to maximum likelihood (ML) vocal tract length normaliza-
tion (VTLN) [4], [5], with the difference being the frequency map-
ping function, which is chosen to better address the formant shifts
introduced by LE. Subsequently, the dynamics of cepstral coeffi-
cients are normalized using two quantiles for each cepstral dimen-
sion estimated from the sorted cepstral samples. Recently, advanced
techniques normalizing the fine structure of cepstral histograms have
been developed, utilizing either a rather extensive adaptation data set
matching the test conditions [6], or quantile-based online normaliza-
tion using two-pass search and continuity criteria [7]. In contrast to
these complex methods, the goal of the proposed cepstral compen-
sation is to address the dynamics of the cepstral coefficients rather
than the fine histogram structure, extending the concepts of the popu-
lar and computationally inexpensive normalizations of cepstral mean
(CMN) [8] and variance (CVN) [9], and recently introduced cepstral
gain normalization (CGN) [10]. The proposed frequency and cep-
stral transformations are incorporated in a recognizer employing a
codebook of acoustic models trained on clean data mixed with car
noise at various SNR’s (noisy models).

The paper is organized as follows. First, novel frequency and
cepstral transformations are introduced and compared to common
algorithms in a recognition task. Second, a small-footprint ASR en-
gine employing a codebook of noisy models is presented.

2. PROPOSEDMETHODS

2.1. Maximum Likelihood Frequency Transformations

The location of vocal tract resonances (formants) in neutral speech is
approximately inversely proportional to the vocal tract length (VTL).
To compensate for the inter-speaker VTL differences, VTL normal-
ization (VTLN) can be used. VTLN warps short-time spectra of
speech by a factor α: FV TLN = F

α
. In the maximum likelihood

(ML) VTLN [4], α is searched to maximize the likelihood of the ut-
terance’s forced alignment, given the utterance transcription and the
ASR hidden Markov model (HMM). When applying VTLN during
recognition, the unknown utterance transcription is first estimated by
decoding unwarped data, followed by alignments (two-pass VTLN
decoding). In [5], a so called fully optimized VTLN decoding was
proposed. Here, the recognized utterance is consecutively warped
by the whole search grid of α’s and decoded, yielding a set of tran-
scription estimates. The warping that yields a decoding path through
the HMM with the highest likelihood is determined and the corre-
sponding transcription is taken.

Formant shifts in LE do not simply correspond to those due to
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VTL variations. Analyses of LE corpora show consistent increases
of the first formant frequency F1, and a frequent increase of the sec-
ond formant frequency F2 in many phones, while higher formants
remain steady or shift in either direction in frequency, depending on
the phonetic content and conditions [1]–[3]. This corresponds well
with the concept that F1 varies inversely to the vertical position of
the tongue and F2 is related to tongue advancement [11], as speak-
ers tend to lower their jaw as well as lower and advance their tongue
when increasing vocal intensity in noise. To allow for more accurate
formant normalization in LE speech, we propose a linear frequency
transform in the form: FW&S = F

α
+ β. As shown in Fig. 1, FW&S

is capable to better address different shifts in low/high formants than
VTLN.
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Fig. 1: VTLN/Warp&Shift frequency transforms – principle.

Implementation of Warp&Shift: The FW&S transform is im-
plemented in a similar way to [4], yielding a normalization called
Warp&Shift. When applying Warp&Shift during HMM training,
each training utterance is transformed consecutively by a set of
FW&S candidates and aligned by forced alignment, given the known
utterance transcription. The transformation maximizing the likeli-
hood of the forced alignment is selected to normalize the utterance,
which is then employed in retraining the HMM. In the recognition
stage, Warp&Shift is applied similarly to fully optimized VTLN.
The search grid for FW&S parameters is defined by two sets s1 =
{0, 50, ..., 200} and s2 = {3000, 3100, ..., 3400}. Only linear
functions FW&S passing through the points A [s1, 0] , B [s2, 3200]
are considered in the ML search for the optimal transformation. In
a manner similar to [4], instead of transforming the frequency axis
of the amplitude spectra, FW&S is applied to the filter bank cutoff
frequencies in the feature extraction front-end (e.g., FW&S defined
by points A [0, 0] , B [3400, 3200] will expand the filter bank and
compress the spectrum, corresponding to VTLN warping, while
pointsA [100, 0] , B [3300, 3200] will shift the filter bank cutoffs by
+100 Hz, shifting the spectrum by 100 Hz downwards). The sets s1,
s2 are chosen to allow for low formant translation by up to−200 Hz,
since it has been observed that the increase in F1, F2 usually does
not exceed this rate [3], and to allow for high formant translation
in either direction. The search grid comprises 5 x 5 = 25 possible
combinations.

In addition, we propose a frequency transform FShift = F +β,
which only shifts the spectra in frequency. The search grid is chosen
β = {0, 50, ..., 300}, yielding 7 choices. FShift is implemented
in a similar way to Warp&Shift, but is applied only in the recogni-
tion stage, utilizing non-normalized HMM’s. Motivation for Shift
normalization is discussed in Sec. 3.

2.2. Quantile-Based Cepstral Dynamics Normalization

Cepstral mean and variance normalization [8], [9] are popular meth-
ods compensating for slow-rate convolutional and additive variations

occurring in the speech production/microphone channel chain. Since
the variances in speech production due to LE can be viewed also
as convolutional distortions of the speech signal, CMN/CVN may
be able to suppress their impact on ASR. Cepstral mean normaliza-
tion (CMN) estimates cepstral means c̄n from a long time window
and subtracts them from each cepstral sample cn,i in the window:
cCMN
n,i = cn,i − c̄n, where n is the cepstral dimension and i is
the index of the cepstral sample in the window. Cepstral variance
normalization (CVN) estimates variance of each cepstral dimension,
σ̂Cn, and normalizes it to unity: cCV N

n,i = cCMN
n,i

‹
σ̂Cn. When the

cepstral distributions drift from Gaussian, variance in CVN may not
well represent the actual dynamic range of cepstra. This is addressed
by the recently introduced cepstral gain normalization (CGN) [10],
which estimates the dynamic range in each dimension from the max-
imum and minimum sample values, cn max, cn min and normalizes it
to unity: cCGN

n,i = cCMN
n,i

‹
(cn max − cn min).

The accuracy of CMN, CVN, and CGN will reduce if the skew-
ness of cepstral distributions from the set used for HMM training
and those occurring in recognition data is different. Even if the dis-
tribution variances are normalized, subtracting the distribution mean
will cause a mismatch in the cepstral dynamic range (e.g., see the
two upper left distributions in Fig. 2, where μ denotes the distribu-
tion mean and q5, q95 are 5% and 95% quantiles, bounding 90% of
the samples). When analyzing cepstral distributions in neutral ASR-
training data and in LE test data used in our experiments (see Sec. 3),
considerable differences in distribution skewness were observed (see
non-normalized c0 distributions in the right of Fig. 2).
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Fig. 2: Left – CVN, CGN, QCN principle. Right – c0 distribution in
neutral train set and LE test set; dashed line – generalized extreme
value interpolation of histogram samples.

To address this, we propose quantile-based cepstral dynamics
normalization (QCN). To reduce the sensitivity of the normaliza-
tion to outliers (CGN utilizes two samples of extreme values), the
cepstral dynamic range is determined from the low and high quan-
tile estimates qCn

j and qCn
100−j , where j is in percent. The quantile

estimates are found in each cepstral dimension by sorting cepstral
samples from the lowest to the highest, and picking samples with in-
dexes round (j.L/100) and round [(100 − j) .L/100] where L is
the number of samples. Instead of subtracting the distribution mean,
an average of qCn

j and qCn
100−j (in Fig. 2 denoted μq) is subtracted,

yielding more accurate dynamic range normalization for distribu-
tions of different skewness (compare the first and third distribution
in the left part of Fig. 2). QCN is defined:

cQCNj
n,i =

cn,i −
`
qCn

j + qCn
100−j

´
/2

qCn
100−j − qCn

j

. (1)
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3. EXPERIMENTAL SETUP AND RESULTS

Database: Recognition experiments are conducted on the Czech
Lombard Speech Database (CLSD‘05) [3], comprising recordings
of neutral speech and speech uttered in simulated noisy conditions
(90 dB SPL of car noise produced to speakers through headphones).
Speech was collected by a close-talk microphone, yielding high SNR
signals (mean SNR of 28 dB). The recorded subjects communicated
utterances over noise to a human operator to ensure proper reac-
tion to the noisy background. The recordings were downsampled
to 8 kHz and filtered by a G.712 telephone filter. For present ex-
periments, clean recordings were mixed with 20 noise samples at
SNR’s of -5, 0,..., 20,∞ dB, where∞ dB represents clean data with
no noise added. The noise samples were recorded in the cabin of a
moving car [3].

Recognition setup: An HMM-based recognizer is used in ex-
periments, employing 43 context-independent monophone models
and two silence models (3 emitting states, 32 Gaussian mixtures).
Cepstral coefficients c0–c12 and their first and second order time
derivatives form the feature vectors. Gender-dependent phoneme
models are trained with 46 iterations on large vocabulary material
from 37 female/30 male speaker sessions from the Czech SPEECON
database [12]. The task is to recognize 10 Czech digits (16 pro-
nunciation variants) in connected digits utterances. The female neu-
tral/LE test sets comprise a total of 4930/5360 words, respectively,
uttered by 12 speakers, while the male neutral/LE test sets comprise
1423/6303 words uttered by 14 speakers. Performance is evaluated
by means of word error rate (WER).

Feature extraction front-ends: In a previous study [3],
20Bands–LPC cepstral coefficients displayed superior performance
on clean LE speech and comparable performance on neutral speech
to Mel frequency cepstral coefficients (MFCC) and perceptual lin-
ear prediction (PLP) cepstral coefficients. 20Bands–LPC is derived
from PLP by replacing the trapezoid filter bank with a bank of
20 non-overlapping rectangular filters uniformly spaced on a lin-
ear scale over 0–4 kHz. In the initial recognition experiment on the
present noisy test sets, 20Bands–LPC outperformed both MFCC and
PLP on all clean/noisy LE sets as well as on noisy neutral sets. On
clean neutral data, MFCC, PLP, and 20Bands–LPC establish com-
parable WER’s (%) for females, 2.82, 2.92, 2.94 respectively; on
clean neutral male set, the WER’s are 2.32, 1.48, 2.60 respectively,
with PLP performing the best (all front-ends employed CVN). Due
to consistent superior performance on most sets, 20Bands–LPC is
chosen for experiments.

Frequency normalizations: Two-pass VTLN [4] (VTLN Lee-
Rose), VTLN utilizing optimized decoding [5] (VTLN Optimized),
and Warp&Shift are applied during both HMM training and recog-
nition. In recognition setups employing these frequency normaliza-
tions, non-normalized HMM’s are trained in 36 iterations. Subse-
quently, a given normalization is applied, providing a normalized
train set which is used for retraining HMM’s in 3 iterations. The
normalization is then repeated, followed by 7 retraining iterations,
yielding fully trained HMM’s. In VTLN, a warping factor α (search
grid set to 0.8–1.2, step 0.05) is applied to the filter bank (FB) cutoff
frequencies. To avoid exceeding Nyquist frequency of 4 kHz during
FB warping, the initial FB is limited to span of 0–3200 Hz. An iden-
tical initial FB is used in all frequency transformation setups. Shift
normalization is implemented similarly, using fully optimized de-
coding. Shift is applied only in the recognition stage, utilizing non-
normalized HMM’s obtained in 46 retraining iterations. Parameters
of the frequency and cepstral transformations are estimated online
for each individual utterance (average length ∼4 sec).

Recognizer employing a codebook of noisy models: It is well
known that in noise, ASR performance can be improved by adding

actual noise characteristics to the acoustic models of a recognizer
[13]. We use a simple recognition scheme employing a codebook
of HMM’s trained on data with different SNR’s. In particular, sep-
arate models are trained on the clean training set mixed with car
noises (5 samples disjunct from those mixed with the test sets) at
SNR’s of∞, 20, 15, ..., -5 dB, yielding a codebook of ‘noisy’ mod-
els. In the recognition stage, each utterance is consequently decoded
by each of the codebook HMM’s, yielding a set of transcription es-
timates. The HMM reaching the highest likelihood of the decoding
path is selected and the corresponding transcription estimate is used.
It is assumed that HMM’s capturing noisy background of the closest
characteristics to those present in the recognized speech signal will
reach the highest decoding likelihood.

3.1. Experiments & Discussion

Frequency normalizations were evaluated on clean neutral/LE
data without applying cepstral compensation to observe separately
their contribution to the ASR performance; see Table 1. The column
20Bands–LPC represents a baseline setup employing 20Bands–LPC
(FB 0–4 kHz) and non-normalized models. It can be seen that VTLN
reduces WER of the baseline system on LE speech, meaning that
scalar warping is partially effective in normalizing LE spectra.

Method 
Set 

20Bands 
LPC

VTLN
Lee-Rose 

VTLN 
Optimized Warp&Shift Shift Shift 

+ QCN4 

Neutral 3.79 3.27 3.02 3.53 3.57 2.90 
F

LE 32.37 23.40 23.23 17.29 14.07 11.92 

Neutral 1.90 2.18 2.18 1.97 2.04 1.69 
M

LE 18.98 18.37 17.45 12.85 13.31 11.45 

Table 1: WER (%), clean data, no cepstral compensation.
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Warp&Shift further improves performance in LE, confirming
that FW&S can better address low and high LE formant shifts.
When analyzing the distribution of FW&S parameters assigned by
the ML search, it was observed that FW&S performs frequency map-
ping in a way that is mostly equivalent to VTLN (A = [0, 0]) during
HMM training, and LE test data are mostly shifted in frequency (by
β) as α → 1. The first observation confirms that VTLN is a good
choice to address inter-speaker differences in neutral speech. The
latter observation motivates the introduction of the Shift transform
as described earlier. Fig. 3 shows locations of F1, F2 in vowels in
neutral and LE samples, and in samples transformed by Warp&Shift
and Shift, and error ellipses covering 39.4% of the formant occur-
rences. It can be seen that both normalizations manage to transform
formants towards the neutral locations, Shift being more accurate.
Table 1 shows that Shift further reduces WER on female LE speech
at an affordable cost of slight WER increase on other sets.

Cepstral normalizations: First, an optimal choice of j for QCN
(see Eq. (1)) was searched in the range 1,2,...,15. When applying

3939



QCN to the training set and a small subset of the test set (neutral/LE
recordings from 2 male/2 female speakers), j = 4 provided the most
consistent WER reduction on both neutral/LE data in all noisy con-
ditions (denoted QCN4); j = 4 determines quantiles q4, q96 bound-
ing 92% of the cepstral samples. The overall performance of cep-
stral compensations in the evaluation task is shown for female sets
in Fig. 4; here, no frequency compensations were employed.
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QCN4 μq denotes a setup where quantile mean μq was sub-
tracted from the cepstra with no normalization of the dynamic range
applied. It can be seen that QCN4 μq considerably outperforms
CMN on noisy neutral data and all standard compensations on
LE data down to 0 dB SNR. QCN4 improves the performance of
QCN4 μq on neutral speech, reaching the best WER’s down to
0 dB SNR. Similar trends were found for male data. Note that for
high SNR’s in neutral data, all compensations slightly increase WER
compared to non-compensated features. Performance of joint QCN4
and Shift is presented for clean data in the last column of Table 1,
showing that combining frequency and cepstral normalizations fur-
ther reduces WER.

Method 
Set 

PLP + CVN 20BandsLPC 
+ QCN4 

20BandsLPC 
+ Shift + QCN4 

+ Codebook 

Neutral 2.92 19.80 2.52 19.13 2.94 11.08 
F

LE 36.46 73.40 18.84 53.62 12.09 35.73 

Neutral 1.48 17.29 2.95 15.25 1.69 8.64 

Clean/
10 dB 
SNR M

LE 20.21 62.65 14.31 43.80 11.45 29.83 

Table 2: Resulting performance –WER (%); clean /10 dB SNR data.
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Resulting ASR system: Performance of an ASR system com-
bining frequency normalization Shift, cepstral compensation QCN4,
and a codebook of noisy models was compared to a system utilizing
standard PLP front-end and CVN, and to 20Bands–LPC with QCN4
(see Fig. 5). Table 2 shows WER’s on clean and 10 dB SNR data
(for each front-end, left/right columns represent clean/10 dB SNR

WER’s). It can be seen that for SNR’s of 15 dB and lower on neu-
tral data and for all LE data sets the codebook recognizer provides
superior performance. Analysis of the likelihood-based model as-
signments in the codebook system shows that in a majority of cases,
noisy models trained on data of the same SNR or close SNR (±5 dB)
as appearing in the actual test utterance were selected for decoding,
showing efficiency of the approach.

4. CONCLUSIONS

This study has presented novel unsupervised frequency and cep-
stral normalizations for noisy Lombard speech recognition, perform-
ing a maximum likelihood transformation of short-time spectra and
quantile-based cepstral dynamics normalization. The normalization
parameters are estimated on-the-fly from the incoming speech sig-
nal. The algorithms are incorporated in an ASR system utilizing a
codebook of acoustic models trained on neutral speech mixed with
noise at different levels of SNR. Evaluation tasks on speech pre-
sented in various levels of background car noise show that the pro-
posed methods are efficient in compensating for the impact of both
LE and noise and improve both neutral and Lombard speech recog-
nition compared to common normalizations.

5. REFERENCES

[1] J.-C. Junqua, “The Lombard reflex and its role on human lis-
teners and automatic speech recognizers,” JASA, vol. 93, no. 1,
pp. 510–524, 1993.

[2] J. H. L. Hansen, “Analysis and compensation of speech under
stress and noise for environmental robustness in speech recog-
nition,” Speech Comm., vol. 20, no. 1-2, pp. 151–173, 1996.
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