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ABSTRACT

This paper presents an enhanced stochastic mapping technique in
the discriminative feature (fMPE) space that exploits stereo data for
noise robust LVCSR. Both MMSE and MAP estimates of the map-
ping are given and the performance of the two is investigated. Due
to the iterative nature of the MAP estimate, we show that combin-
ing MMSE and MAP estimates is possible and yields superior per-
formance than each individual estimate. A multi-style discrimina-
tive training with minimum phone error (MPE) criterion is further
applied to the compensated features and obtains significant perfor-
mance improvement on real-world noisy test sets.

Index Terms— Stereo feature, stochastic mapping, discrimina-
tive training, noise robustness, automatic speech recognition

1. INTRODUCTION

Stereo-based stochastic mapping (SSM) proposed in our previous
work [1][2] has been shown to significantly improve the perfor-
mance of LVCSR systems in noisy environments. The SSM is a
front-end data-driven technique for noise robustness. It assumes a
joint Gaussian mixture model (GMM) in the stereo feature space and
the mapping between clean and noisy features is estimated from the
GMM to compensate the noisy features. In [1] and [2], cepstral and
LDA domains were chosen to perform the feature compensation. In
this paper, we extend our previous work by introducing the SSM to
the discriminative feature space - fMPE space. fMPE [3] expands
the traditional speech features, e.g. MFCC or PLP, into a very high
dimensional and sparse space based on their posterior probabilities
against a large set of Gaussians and projects them back to the origi-
nal space by discriminatively estimating the projection matrix under
the minimum phone error (MPE) criterion. Emerging as a powerful
feature space discriminative training approach, fMPE has yielded
impressive gains over the traditional features themselves. Therefore,
fMPE space is a potentially better stage to apply SSM.

SSM can be estimated under various criteria among which max-
imum a posteriori (MAP) and minimum mean square error (MMSE)
are the two typical choices. In this paper, both the MAP and MMSE
estimates are given. The two estimates and fMPE can be considered
belonging to a family of piece-wise linear estimators. Their mathe-
matical connections are also discussed. Since the MAP estimate is
iterative, it is also possible to combine the two estimates, i.e. MAP
and MMSE, which will show to deliver superior performance than
each individual estimate alone.

Given the SSM compensated features, they can be either directly
decoded by clean acoustic models or used for an environment adap-
tive multi-style re-training. The re-trained multi-style model is able

to capture the acoustic characteristics of the compensated features.
It can be further improved by the MPE discriminative training. The
performance of all the scenarios will be investigated in the paper on
some real-world noisy test sets.

The remainder of the paper is organized as follows. Section 2
provides an overview of noise robust techniques in the front-end
feature space. In Section 3, we give the mathematical formulation
of SSM under the MAP and MMSE criteria and a discussion of the
relationship between the piece-wise linear estimators. Experimen-
tal results are presented in Section 4 followed by a summary and
discussions in Section 5.

2. NOISE ROBUSTNESS IN FEATURE SPACE

Noise robust techniques can be roughly categorized into two groups
depending on whether they are applied in the feature space or model
space. Compared to the model space techniques, feature space tech-
niques have a low computational complexity and are easy to decou-
ple from the acoustic model end, which makes them attractive for
complicated LVCSR systems.
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Fig. 1. Pipeline of an exemplary front-end feature computation
scheme.

Fig.1 shows an exemplary front-end computation of an IBM
LVCSR system with MFCC features. It can be easily extended to
other features like PLP. There are multiple stages in such pipelines
and the computation evolves through various feature spaces such as
linear spectral space (FFT or power spectrum), Mel spectral space,
cepstral space and discriminatively trained feature space (LDA and
fMPE). Depending on the nature of the algorithm, feature space
noise robust techniques apply compensation or enhancement at dif-
ferent feature spaces. For instance, spectral subtraction [6] performs
noise suppression in the linear spectral space. The phase-sensitive
feature enhancement in [7] is in the log Mel spectral space.

As a data-driven approach that does not rely on explicit model
of feature extraction, SSM can be flexibly applied to different fea-
ture spaces. In [1] and [2], it was applied in both MFCC and LDA
spaces. The results indicate that the LDA space was a better choice
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than MFCC since it was closer to the final model space. In [3],
the MPE based discriminative training was introduced to the LDA
feature space and the resulted discriminatively trained fMPE space
has shown to achieve significant improvement over the original LDA
space. Therefore, in this paper we extend SSM to the fMPE space
for hopefully better performance.

3. SSM AND DISCRIMINATIVE TRAINING

SSM is based on stereo features {(x, y)} that are the concatenation
of clean speech feature vectors x and noisy speech feature vectors y.
In the most general case, y can be Ln noisy vectors used to predict
Lc clean vectors in x.

Define z ≡ (x, y) as the joint stereo feature vectors. A GMM is
assumed and trained by the EM algorithm on the joint vectors z as
shown in Eq.1

p(z) =
KX

k=1

ckN (z; μz,k, Σzz,k) (1)

whereK is the number of mixture components, ck, μz,k, and Σzz,k

are the mixture weight, mean, and covariance of each component,
respectively. Both the mean and covariance can be partitioned as

μz,k =

„
μx,k

μy,k

«
(2)

Σzz,k =

„
Σxx,k Σxy,k

Σyx,k Σyy,k

«
(3)

where subscripts x and y indicate the clean and noisy speech features
respectively. The trained GMM and the noisy features are used to
estimate the clean features during testing.

3.1. SSM with fMPE

In this particular work, x and y are obtained by fMPE training on the
LDA features according to the feature pipeline in Fig.1. From [3],
the fMPE features are computed as Eq.4.

ζ
fMPE = ζ

LDA + M · h (4)

where ζ fMPE and ζLDA are features in the fMPE and LDA spaces, h a
vector in a high dimensional but sparse space consisting of posterior
probability against a collection of Gaussians,M a projection matrix
estimated under the MPE criterion.

The generation of the vector h uses the enhanced high-dimensional
features presented in [8]. The Gaussian clusters is composed of 1024
Gaussians and the posterior probability of the nth Gaussian γn is
supplemented with the γn-scaled offset of the LDA feature ζLDA

from the mean of the nth Gaussian and normalized by the its stan-
dard deviation. Two-layered projection for computational efficiency
discussed in [8] is also employed.

3.2. MMSE-based SSM

Given the observed noisy speech feature y, the MMSE estimate of
clean speech x is given by

x̂ = E[x|y] (5)

The solution of Eq.5 can be written in a piece-wise linear form as
Eq.6 [2]

x̂ =
X

k

p(k|y)(Aky + bk) (6)

where

Ak = Σxy,kΣ−1
yy,k (7)

bk = μx,k − Σxy,kΣ−1
yy,kμy,k (8)

and p(k|y) is the posterior probability against p(y), the marginal
noisy speech distribution of the joint stereo distribution p(x, y).

3.3. MAP-based SSM

Given the observed noisy speech feature y, the MAP estimate of
clean speech x is given by

x̂ = argmax
x

p(x|y) (9)

From [1], Eq.9 can be solved using the EM algorithm, which results
in an iterative estimation process. In each iteration, the estimate can
also be written in a piece-wise linear form as Eq.10.

x̂
(l) =

X

k

p(k|x̂(l−1)
, y)(Cky + dk) (10)

where x̂(l−1) is the estimate of x from previous iteration,

Ck =

 
X

k

p(k|x̂(l−1)
, y)Σ−1

x|y,k

!−1

·

Σ−1
x|y,kΣxy,kΣ−1

yy,k (11)

dk =

 
X

k

p(k|x̂(l−1)
, y)Σ−1

x|y,k

!−1

·

Σ−1
x|y,k

`
μx,k − Σxy,kΣ−1

yy,kμy,k

´
(12)

and p(k|x̂(l−1), y) is the posterior probability against the joint stereo
distribution.

3.4. Mathematical Connections

It was shown in [2] that the MMSE estimate of SSM is a special
tying case of one iteration of the corresponding MAP estimate. In
other words, it assumes all Gaussians in the GMM share the same
conditional covariance matrix

Σx|y,k = Σx|y (13)
which is a reasonable result of the “averaging” effect of the expecta-
tion function E[x|y] in the MMSE estimate.

Due to the iterative nature of the MAP estimate of SSM, an ini-
tial guess has to be made about the clean speech feature x̂(0). A
natural choice would be the noisy speech feature y itself, which was
used previously in [1] and [2] as a starting point. It is also interesting
to combine the two estimates by setting the MMSE estimate as the
starting clean feature for the MAP iteration as shown in Eq.14

x̂
(0) = x̂MMSE (14)

Therefore, the combination leads to a two-stage stochastic mapping
strategy which performs the MMSE estimate first followed by the
iterative MAP estimate.

A close investigation shows that the MMSE estimate in Eq.6,
the MAP estimate in Eq.10, SPLICE and fMPE can be considered
under a unified framework of piece-wise linear estimators weighted
by posterior probabilities. In [2], it is shown that SPLICE in Eq.15
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is a special case of the MMSE estimate of SSM in Eq.6 under the as-
sumption that Ak is an identity matrix which is equivalent to x and
y having a perfect correlation. In [5], a connection between SPLICE
(Eq.15) and fMPE is discussed where the fMPE formula in Eq.4 is
rewritten in the form in Eq.16 withmk being the kth column vector
of the projection matrix M and p(k|y) the posterior probability in
h.1 From Eq.15 and Eq.16, both SPLICE and fMPE share a sim-
ilar piece-wise linear structure with posterior probability. SPLICE
has the bias term rk estimated under the maximum likelihood crite-
rion while fMPE hasmk estimated under the minimum phone error
criterion.

x = y +
X

k

p(k|y)rk

=
X

k

p(k|y)(y + rk) (15)

x = y + M · h

= y +
X

k

p(k|y)mk

=
X

k

p(k|y)(y + mk) (16)

Therefore, if we define ffMPE, fMMSE and fMAP as the piece-wise
linear functions for fMPE, MMSE and MAP mappings respectively,
the overall MAP-based SSM estimation in the fMPE space with the
MMSE-based SSM estimate being the starting point can expressed
as

x̂ = fMAP ◦ fMMSE ◦ ffMPE(y
LDA) (17)

where ◦ indicates composition. This amounts to applying a sequence
of posterior probability weighted piece-wise linear mappings on the
noisy LDA features to estimate the clean features.

3.5. Multi-style MPE re-training

After the stochastic mapping, the compensated features can be di-
rectly decoded by clean acoustic models. For better performance, an
environment adaptive multi-style discriminative re-training can be
further applied. In this case, the estimated mapping is applied back
to the training data to train a new acoustic model with the SSM-
compensated features under the MPE criterion [9] in Eq.18

FMPE(λ) =

RX

r

P
s
pλ(Or|s)

κp(s)κA(s, sr)P
s
pλ(Or|s)κp(s)κ

(18)

where λ are the HMM parameters, Or the feature sequence of the
rth utterance, κ a probability scale and p(s) the pre-scaled language
model probability. It is an average of the “raw phone accuracy” in
A(s, sr) of all possible sentences s, weighted by the sentence poste-
rior probability.

The acoustic model obtained by the multi-style re-training is
able to capture the characteristics of the compensated speech fea-
tures and therefore is supposed to yield better performance than the
clean acoustic model.

4. EXPERIMENTAL RESULTS

Experiments are conducted to evaluate the proposed technique on
LVCSR tasks.

1The symbols in Eq.16 are chosen to be consistent with those in Eq.15
only for comparison purpose. x and y represent features in different spaces
in this particular equation and should not be confused with clean and noisy
features x and y in the rest of the paper.

The clean training data has 150 hours of speech from which an
MPE clean acoustic model with 55k Gaussians and 4.5k states is
built. The noisy data are generated by adding a mix of humvee, tank
and babble noise to the clean data around 15 dB. These three types
of noise are chosen to match the military deployment environments
in the DARPA Transtac Project. Thus, there are in total 300 hours
of training data in the multi-style training case and the multi-style
acoustic model has 90k Gaussians and 5k states.

The feature space of the acoustic models is created as Fig.1. The
MFCC features are composed of 24 dimensions. After utterance-
based cepstral mean normalization, 9 vectors, including the current
vector and its left and right neighbours, are stacked to form a 216-
dimensional parameter space. The feature space is then reduced
to 40 dimensions using a combination of linear discriminant anal-
ysis (LDA) and a global semi-tied covariance (STC) matrix. Finally
fMPE training is performed to get the discriminative feature. The
fMPE projection matrix is learned from the 150 hour clean data and
later on applied to both clean and noisy data.

GMMs are trained on the noisy training data and the mapping is
SNR-specific. In test, a GMM-based environment classifier is used
to estimate the SNR of the utterances. The environment classifier
has two sets of GMMs modeling clean and noisy environments with
each having 4 Gaussian components. They are trained on the first
10 frames of each training utterance. The first 10 frames of test
utterances are collected and the GMM with the higher likelihood
is chosen as the environment of the utterance. SSM compensation is
only applied to the noisy environment. The dimension-by-dimension
compensation is employed in the experiments where Σxx, Σyy and
Σxy are assumed diagonal. Hence, it only involves scalar operations.

A good noise robust technique should be able to improve per-
formance under noisy conditions while maintaining decent perfor-
mance in clean conditions. To this end, the proposed technique is
evaluated on two test sets with continuous speech. Set A consists of
2070 utterances (around 1.7 hours) recorded in clean condition. Set
B consists of 1421 utterances (around 1.2 hours) recorded in a real-
world noisy condition with humvee noise running in the background.
The estimated SNRs of the Set B are about 5-8dB. The test utter-
ances are decoded by a Viterbi decoder on a finite state graph with a
trigram language model and a vocabulary of 32k English words.

Table 1 shows the performance tested using the clean MPE
acoustic model. In this table, word error rates (WERs) of various
SSM estimates are presented where SSM MAP stands for the MAP
estimate starting from the noisy speech feature, SSM MMSE for the
MMSE estimate, SSM MMSE MAP for the MAP estimate starting
with the MMSE estimate. All the MAP estimations are run for 3
iterations. The numbers in the parentheses are the number of Gaus-
sians in the GMM for the SSM estimation. The baseline is tested
without feature compensation. Since the clean acoustic model stays
unchanged, SSM gives the same results for Set A after environment
detection. As the acoustic model is discriminatively trained on
clean speech, the baseline result on Set B noisy data is very poor.
But SSM is able to significantly improve the results. From the table,
SSM MMSE MAP yields the best performance on Set B, better than
SSM MAP and SSM MMSE alone. Compared to the SSM MAP,
SSM MMSE MAP reduces the WER relatively by 50%. SSM with
2048 Gaussians in the GMM gives a slight gain over using 1024
Gaussians.

Table 2 shows the performance of acoustic models by multi-style
training. The baseline model is trained with fMPE and MPE on the
multi-style data including the 150 hours of clean data and the 150
hours of un-compensated noisy data. Other models are trained on the
150 hours of clean data and the 150 hours of the SSM-compensated
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Condition Set A Set B
baseline 3.14 61.46

SSM MAP(1024) 3.14 55.45
SSM MAP(2048) 3.14 55.22
SSM MMSE(1024) 3.14 26.41
SSM MMSE(2048) 3.14 25.39

SSM MMSE MAP(1024) 3.14 24.77
SSM MMSE MAP(2048) 3.14 24.12

Table 1. Word error rate (WER) of SSM in fMPE space on Sets A
and B against clean acoustic model.

noisy data. These acoustic models excluding the baseline are first
trained under the ML criterion based on which the MPE training
is then applied. The ML and MPE models are distinguished in the
parentheses. The GMM in SSM is composed of 1024 Gaussians.
The notations for the estimate, i.e. SSM MAP, SSM MMSE and
SSM MMSE MAP, have the same definitions as Table 1. It is ob-
served from the two tables that the baseline (original clean and noisy
features without compensation) with multi-style training in Table 2
improves in the noisy condition (Set B) but degrades in the clean
condition (Set A) compared to the baseline in Table 1. When us-
ing compensated feature for multi-style training, the performance
improves for both Set A and Set B. SSM MMSE MAP again yields
better performance than SSM MAP and SSM MMSE. MPE training
gives additional gain over ML models on Set B but degrades a little
bit on Set A for SSM MAP and SSM MMSE. SSM MMSE MAP
with MPE training gives the overall best results on both Set A and
Set B, as shown in the last row of Table 2. It significantly reduces
WER in the noisy condition (Set B) while maintaining a decent per-
formance in the clean condition (Set A).

Condition Set A Set B
baseline 5.74 27.07

SSM MAP(ML) 3.24 27.39
SSM MAP(MPE) 3.56 27.35
SSM MMSE(ML) 2.87 24.17
SSM MMSE(MPE) 3.43 23.56

SSM MMSE MAP(ML) 3.30 23.66
SSM MMSE MAP(MPE) 3.13 22.20

Table 2. Word error rate (WER) of SSM in fMPE space on Sets A
and B with multi-style re-training.

5. SUMMARY AND DISCUSSIONS

In this paper, we extend SSM into the discriminatively trained fea-
ture space - fMPE space. Both MAP and MMSE estimates of the
mapping are investigated. We show that the combination of the
two estimates leads to a two-stage feature compensation process. It
uses the MMSE estimate as the starting point to perform the itera-
tive MAP estimation. It yields superior performance over individual
MMSE or MAP estimate. With the compensated fMPE features, a
multi-style MPE training is further applied and shown to get addi-
tional performance improvement. The experimental results indicate
that the proposed technique significantly improve the performance
of LVCSR systems under real-world noisy conditions while giving
decent performance in the clean condition.

SSM is a data-driven feature space noise robust technique that
exploits stereo data. Hence, it has its advantages and disadvantages.
Since it is data-driven and does not rely on model for feature com-
putation, it is quite flexible to apply to various speech features (e.g.
MFCC or PLP) and various spaces (e.g. linear or Mel-spectral space,
cepstral space, LDA and fMPE spaces, etc). SSM requires stereo
data from a particular feature space. However, stereo data is usually
expensive to collect. This is one shortcoming of SSM. A subopti-
mal alternative, as done in this paper, would be to artificially gen-
erate data for the noisy channel. This works well for the real-world
noisy data in the experiments. Different from the model-based fea-
ture compensation techniques which typically estimate noise along
with the compensation, SSM as a data-driven approach relies on the
noise in the training data and may not handle the unseen noise very
well. This is its another disadvantage. Coping with this kind of
noise type mismatch problem is the focus of future work and could
use well-known adaptation techniques.
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