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ABSTRACT

In this paper we investigate an incorporation of mask mod-
elling into an HMM-based ASR system. The mask model is
estimated for each HMM state and mixture by using a sep-
arate Viterbi-style training procedure and it expresses which
regions of the spectrum are expected to be uncorrupted by
noise for the HMM state. Experimental evaluation is per-
formed on noisy speech data from the Aurora 2 database.
Significant performance improvements are achieved when the
mask modelling is incorporated within the standard model
and two models that had already compensated for the effect
of the noise.

Index Terms— automatic speech recognition, mask mod-
elling, noise robustness, missing-feature theory.

1. INTRODUCTION

The performance of automatic speech recognition (ASR)
systems degrades rapidly when speech signal is corrupted
by a background acoustical noise. There have been several
different ways to improving noise robustness. Feature rep-
resentation of the speech signal that is more robust to the
effect of noise can be sought. Speech signal can be enhanced
prior to its employment in the recogniser by techniques such
as spectral subtraction, Wiener filtering, or MAP-based en-
hancement, e.g., [1] [2]. Assuming availability of some
knowledge about the noise, noise-compensation techniques,
e.g., [3], can be applied in the feature or model domain to
reduce the mismatch between the training and testing data.
Considering that only information on the location of noise-
corrupted spectro-temporal elements is available (referred to
as mask), the missing feature theory (MFT) can be employed
for improving noise robustness [4] [5] by marginalising these
elements in the observation probability calculation.
Recently, several techniques has been proposed which

aim to exploit the speech signal properties, such as, the spec-
tral peaks being more robust to a broad-band noise than the
spectral valleys or harmonicity information. The authors in
[6] proposed a technique that performs locking of the spec-
tral peak-to-valley ratio in order to alleviate the mismatch

between clean and noisy features caused by the spectral val-
leys being buried by noise. The authors in [7] [8] appended
the information on spectral peaks into the acoustic features.
This was shown to improve the recognition accuracy on clean
speech and isolated-word recognition in noisy conditions.
The authors in [9] modified the likelihood calculation with
the aim of emphasising parts of the spectrum corresponding
to peaks.
In this paper, we investigate an incorporation of the mask

modelling into an HMM-based automatic speech recognition
(ASR) system in noisy conditions. As the mask expresses
which spectro-temporal regions are uncorrupted by noise, the
proposed technique can also be seen as a generalised and
soft incorporation of the spectral peak information. We have
introduced this technique in [10], where evaluations were per-
formed on intervocalic English consonant recognition task. In
the proposed model, the mask model is associated with each
HMM state and mixture and it expresses what mask informa-
tion the state/mixture would expect to find in the signal. The
mask modelling is performed by employing the Bernoulli
distribution whose parameters are estimated by a separate
Viterbi-style training procedure after the HMMs are trained
using the acoustic features. The incorporation of the mask
modelling is evaluated in a standard model and in two models
that had compensated for the effect of the noise, missing-
feature and multicondition training model. Experiments are
performed on the Aurora 2 database. Experimental results
show significant improvements in recognition performance in
strong noisy conditions achieved by the models incorporating
the mask modelling.

2. INCORPORATING MASK MODELLING INTO
HMM-BASED ASR SYSTEM

Let Y be the sequence of observation vectors extracted from
a given speech utterance. The goal of a speech recogniser
is to find the word sequence Ŵ that maximises the posterior
probability P (W |Y ). Let us consider that an additional in-
formation reflecting which spectro-temporal region contains
an uncorrupted information is available and this is contained
in the sequence of mask vectors M . Considering an HMM-
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based ASR system with the proposed incorporation of mask
modelling, the search for Ŵ can then be expressed as

Ŵ ≈ arg max
W

P (Y |M,S,W )P (M |S,W )P (S|W )P (W )

(1)
where P (S|W ) is the HMM state-transition probability, S

is the sequence of HMM states used during the recogni-
tion, and P (W ) is the language-model probability. The term
P (Y |M,S,W ) is the probability of the observation sequence
Y , which is (unlike in the standard model) now conditioned
also on the mask M – as such, this term corresponds to the
employment of the missing-feature technique.
The term P (M |S,W ) is referred to as mask-model prob-

ability and its incorporation is the novelty presented in this
paper. This term expresses how likely the given mask M is
being generated by the HMM state sequence S. The mask-
model probability P (M |S,W ) serves as a penalisation fac-
tor for states whose mask model is not in agreement with the
mask extracted from the given acoustic signal.
Having an example of noise (or knowledge of noise char-

acteristics), the mask model could be estimated based on
masks obtained from the training data corrupted by the given
noise. Having no information about noise, it could be esti-
mated by using a mask reflecting some a-priori knowledge
about speech, for instance, the fact that high-energy regions
of speech spectra are less likely to be corrupted by noise. In
this paper, the training of the mask model was performed by
employing the oracle masks estimated on the training data
corrupted by various noises and at various SNR levels (the
multicondition training data).
The estimation of the mask model is performed by a sepa-

rate training procedure that is performed after the HMMs have
been trained (i.e., the trained HMMs are not altered). The fol-
lowing sections give detailed description of the estimation of
the mask model and its incorporation during the recognition.

2.1. Estimating the mask model for HMM states

Let m = {m(1), . . . ,m(B)} denotes the mask vector at a
given frame, where m(b) is the binary mask information of
the channel b and B is the number of channels. We model the
mask-model probability P (m|l, s) for each HMM state s and
mixture l using the multivariate Bernoulli distribution as

P (m|l, s) =

B∏

b=1

μ
m(b)
b,l,s (1 − μb,l,s)

1−m(b) (2)

where μb,l,s is the parameter of the distribution. The esti-
mation of the parameters μb,l,s of the mask models at each
HMM state and mixture can be performed by a Baum-Welch
or Viterbi -style training procedure; the latter was used in this
paper.
Given a speech utterance, we have a sequence of feature

vectors Y = {y1, . . . ,yT } and the corresponding sequence

of mask vectorsM = {m1, . . . ,mT } where T is the number
of frames. The Viterbi algorithm is then used to obtain the
state-time alignment of the sequence of feature vectors on the
HMMs corresponding to the speech utterance. This provides
an association of each feature vector yt to some HMM state s.
The posterior probability that the mixture-component l (at the
state s) have generated the feature vector yt is then calculated
as

P (l|yt, s) =
P (yt|s, l)P (l|s)∑
l′ P (yt|s, l′)P (l′|s)

(3)

where the mixture-weight P (l|s) and the probability density
function of the features used to calculate the P (yt|s, l), are
obtained as an outcome of the HMM training.
For each mixture l and HMM state s, we collect (over the

entire training data-set) the posterior probabilities P (l|yt, s)
for all yt’s associated with the state s together with the cor-
responding mask vectors mt’s. The parameters μb,l,s of the
mask models are then estimated as

μb,l,s =

∑
t:yt∈s P (l|yt, s) · mt(b)∑

t:yt∈s P (l|yt, s)
(4)

wheremt(b) is the binary mask value.
Examples of the estimated mask model parameters for

HMMs of digits ‘one’ and ‘two’ are depicted in Figure 1. Re-
gions of a high value of the mask model parameter reflect that
the masks associated with the given state were for those re-
gions often one, i.e., little affected by noise. For instance, it
can be seen that in digit ‘two’ the states from three to five
(which are likely to correspond to phoneme /t/) have high val-
ues of the parameter in high frequency regions.
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Fig. 1. Examples of the estimated mask model parameters for
HMMs of digits ‘one’ (a) and ‘two’ (b).

2.2. Mask-probability incorporation during recognition

The value of the mask-probability when being incorporated
in the overall probability calculation in Eq. 1 may need to
be scaled in order to achieve an appropriate effect of the
mask-model probability on the overall probability (akin to
language-model scaling). This can be performed by employ-
ing a sigmoid function to transform the P (m(b)|s, l) for each
b to a new value, i.e.,

P (m(b)|s, l) =
1

1 + e−α(P (m(b)|s,l)−0.5)
(5)
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where α is a constant defining the slope of the function and
the value 0.5 gives shift of the function. The bigger the value
of α is the greater the effect of the mask-probability on the
overall probability. An appropriate value for α can be decided
based on a small set of experiments on a development data.

3. EXPERIMENTAL EVALUATIONS

The experiments were carried out on the Aurora 2 English
language connected-digit database. The frequency-filtered
logarithm filter-bank energies [11] were used as speech fea-
ture representation, due to their suitability for missing-feature
based recognition. These were obtained with the follow-
ing parameter set-up: frames of 32 ms length with a shift
of 10 ms between frames were used; both preemphasis and
Hamming window were applied to each frame; the short-
time magnitude spectra, obtained by applying the FFT, was
passed to Mel-spaced filter-bank analysis with 20 channels;
the obtained logarithm filter-bank energies were filtered by
using the filter H(z)=z-z−1 [11]. A feature vector consisting
of 18 elements was obtained (the edge values were excluded).
In order to include dynamic spectral information, the first-
order delta parameters were added to the static FF-feature
vector. A continuous-observation left-to-right HMM with 16
states (no skip allowed) was used to model each digit; the
pdf at each state was modelled with three and ten Gaussian
mixtures when using clean and multicondition training, re-
spectively, and diagonal covariance matrices. The training of
HMMs was performed on utterances from the training set.
The noisy speech data from the Set A in Aurora 2 were used
for recognition experiments. The experimental evaluations
were performed by using an in-house speech recognition sys-
tem for training the mask models and the Hidden Markov
Model Toolkit (HTK) [12], which was modified to include
the missing-feature method and mask modelling.
The evaluation of the proposed incorporation of mask

modelling is first performed by employing the oracle mask.
Recognition results obtained for the standard model are pre-
sented in Figure 2. Evaluations were also performed on
two types of models that had compensated for the effect of
noise in order to determine whether incorporating the mask
modelling can still provide improvements (as noise compen-
sation could decrease the amount of disagreement between
the current mask information and mask models). Results
are presented for the missing-feature model (marginalisation
employing the oracle mask in order to provide an idealised
noise-compensation) in Figure 3 and for the multicondition
trained model in Figure 4. It can be seen that incorporating
the mask modelling provides significant recognition accuracy
improvements in all noisy conditions on the standard model
and both models that had already compensated for the noise.
These results demonstrate that having an accurately estimated
mask (i.e., mask close to the oracle mask), the incorporation
of the mask modelling can provide significant improvements.
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Fig. 2. Recognition accuracy results obtained by the standard
model without and with incorporated mask-probability.
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Fig. 3. Recognition accuracy results obtained by the MFT
model without and with incorporated mask-probability.

We also present experimental results obtained when em-
ploying an estimated mask. As the mask estimation is not
the focus of this paper a simple mask estimation procedure
based on a noise-estimate and sub-band voicing information
(obtained by technique presented in [13]) were employed for
estimation of the uncorrupted unvoiced and voiced regions,
respectively. The results obtained when the estimated mask
was employed in the MFT-based system are presented in Fig-
ure 5. It can be seen that the mask estimation procedure is
not very accurate as only moderate improvements of the MFT
are obtained over the standard model. Despite of this, the in-
corporation of the mask modelling provides still considerable
recognition accuracy improvements.

4. CONCLUSION

In this paper, we presented an incorporation of mask mod-
elling into HMM-based ASR system. The mask model was
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Fig. 4. Recognition accuracy results obtained by the multi-
condition trained model without and with incorporated mask-
probability.

−5 0 5 10 15 20
10
20
30
40
50
60
70
80
90

100

R
ec

. A
cc

. [
%

]

Subway noise

SNR [dB]

MFTest+MP
MFTest
Standard

−5 0 5 10 15 20
10
20

30
40
50
60
70
80
90

100

R
ec

. A
cc

. [
%

]

Babble noise

SNR [dB]

−5 0 5 10 15 20
10
20

30
40
50
60
70
80
90

100

R
ec

. A
cc

. [
%

]

Car noise

SNR [dB]
−5 0 5 10 15 20

10
20

30
40
50
60
70
80
90

100

R
ec

. A
cc

. [
%

]

Exhibition noise

SNR [dB]

Fig. 5. Recognition accuracy results obtained by the MFT
model using an estimated mask without and with incorporated
mask-probability.

estimated by a separate training procedure for each mix-
ture at each HMM state. The effectiveness of the method
was demonstrated within a standard model and two types of
noise-compensated models, missing-feature and multicon-
dition training. Experimental evaluations were performed
on noisy speech data from the Aurora 2 database. Employ-
ing the oracle masks, significant performance improvements
in all noisy conditions were obtained when the mask mod-
elling is incorporated in the standard model, and also in both
models which had already compensated for the effect of
noise. Evaluations were also performed employing an esti-
mated mask obtained by a simple method on the MFT-based
noise-compensated model and considerable performance im-
provements were observed.
This work was supported by UKEPSRC grants EP/D033659/1
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