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ABSTRACT

In this paper, we propose an acoustic model combination tech-
nique for reducing a mismatch in a multi-channel noisy environ-
ment. To this end, we first apply a mask-based multi-channel 
source separation method, typically computational auditory scene 
analysis (CASA), to separate the speech source from noise. How-
ever, a certain degree of noise remains in the separated speech 
source, especially under low signal-to-noise ratio (SNR) condi-
tions since the estimated mask is not ideal. Thus, the performance 
of automatic speech recognition (ASR) is limited. To improve 
ASR performance, the remaining noise can be further compen-
sated in the acoustic model domain under a framework of parallel 
model combination. In particular, a noise model for PMC is esti-
mated from the noise remained after application of the mask-
based source separation, and SNR for PMC is also estimated 
based on the average of relative magnitude of mask along the ut-
terance. It is shown from the experiments that the proposed 
acoustic model combination method relatively reduces the word 
error rate by 52.14% compared to mask-based source separation 
alone.

Index Terms— Speech recognition, multi-channel source 
separation, parallel model combination, mask-based noise model 
estimation, mask-based SNR estimation, computational auditory 
scene analysis 

1. INTRODUCTION 

Selective hearing is a useful mechanism for extracting desired 
signals in noisy acoustic environments, often called the “cocktail 
party effect” [1]. In human auditory systems, a desired signal can 
be localized and separated based on the inter-aural time difference 
(ITD) and the inter-aural level difference (ILD), respectively. In 
contrast, a mask-based multi-channel source separation (MMSS) 
method such as computational auditory scene analysis (CASA) 
separates a target signal and noise using ITDs and ILDs based on a 
set-up of two or more microphones [2]. In MMSS, time-frequency 
(T-F) mask information is first estimated from ITDs and ILDs. 
After that, since the T-F mask information indicates the dominance 
of target speech at a particular T-F region, the target speech can be 
separated after applying the estimated T-F mask to noisy speech.  

Among the research works investigating mask estimation in 

binaural (or two-microphone) environments, Roman et al. pro-
posed a Gaussian kernel-based mask estimation method based on a 
supervised learning algorithm [3]. However, since residual noise 
signals can remain in target signals separated by the Gaussian ker-
nel-based MMSS, the performance of automatic speech recogni-
tion (ASR) using the target signals can degrade especially under 
low signal-to-noise ratio (SNR) conditions. Thus, methods being 
capable of compensating for residual noise are required.

Acoustic model adaptation such as parallel model combina-
tion (PMC) can be a candidate approach to compensating for the 
remaining noise to further improve the ASR performance. PMC 
provides noise-corrupted models using the SNR-weighted combi-
nation of clean-trained models and a noise model obtained from a 
noisy input speech [4]. Thus, the acquisition of a well-estimated 
noise model and exact SNR is important in PMC to improve ASR 
performance in noisy environments. 

In this paper, we propose a noise model estimation method 
and an SNR estimation method for PMC from the mask informa-
tion obtained from MSS. Specifically, in the proposed mask-based 
noise model estimation (MNME) method, a noise mask, which is 
defined by a mask subtracted from 1, is applied to noisy speech, 
generating an estimated noise signal. After that, a noise model for 
PMC is obtained from the estimated noise signal. In the proposed 
mask-based SNR estimation (MSE) method, the ratio between the 
average values of a mask and a noise mask is calculated to esti-
mate SNR for PMC. 

The remainder of this paper is organized as follows. MMSS is 
briefly reviewed in Section 2, and an overview of the proposed 
acoustic model combination method including MNME and MSE is 
presented in Section 3. In Section 4, speech recognition experi-
ments are performed. Finally, we conclude the paper in Section 5. 

2. MASK-BASED MULTI-CHANNEL SOURCE 
SEPARATION

In this section, we summarize a mask-based multi-channel source 
separation (MMSS) method as a means of providing a further un-
derstanding of the motivation for the proposed approach. In the 
MMSS method utilized in this paper [2], separation of the target 
signal is performed on binaural input signals. To achieve this sepa-
ration, the binaural signals are first decomposed into auditory spec-
tral signals by employing a gammatone filterbank. The envelopes 
of the left and right auditory spectral signals are then calculated at 
each frame and frequency channel. 
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2.1. Binaural cue extraction 

To estimate mask patterns, a pair of ITD and ILD for each frame 
and frequency channel must be extracted. For a given frame and 
frequency channel, the normalized cross-correlation between the 
auditory spectral signals from the left and right channels is first 
calculated. Then, ITD is estimated as the time lag where the nor-
malized cross-correlation is maximized. Next, ILD is computed as 
the ratio of auditory envelopes obtained from the left and the right 
channel signals.

2.2. Masking for source separation 

The mask information is extracted from the estimated ITDs and 
ILDs, and used to separate the desired speech from noisy speech. 
In this paper, we use the Gaussian kernel-based mask estimation 
method [3], where the mask models are trained by employing a 
Gaussian kernel density estimator for a given frame and frequency 
channel. Each trained model provides a mask value obtained from 
the ratio of speech probability and noise probability in the two-
dimensional ITD-ILD plane. 

As a reference, an ideal mask is also obtained as the ratio of 
the envelopes of the clean target signal and the noise signal, as-
suming that the background noise added to clean speech is com-
pletely known [5]. 

 Finally, the auditory spectral signals of a target source are es-
timated by multiplying either a Gaussian kernel-based mask or an 
ideal mask to the input auditory spectral signals.  

2.3. Generation of estimated clean speech 

The estimated clean speech is obtained by inversely filtering the 
auditory spectral signals by the gammatone filterbank [6]. Fig. 1 
illustrates the waveforms of original clean speech, noisy speech, 
and separated clean speech after applying the Gaussian kernel-
based mask. Note here that when compared to the original clean 

speech signal, the estimated clean speech signal (Fig. 1(c)) is still 
noisy even its SNR is higher than the noisy speech signal shown in 
Fig. 1(b). If the estimated clean speech is directly used for ASR, 
the ASR performance might be degraded due to the remaining 
residual noise in the estimated clean speech signal. Thus, in the 
next section we propose a method that compensates for such resid-
ual noise in the acoustic model domain.
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Figure 2: Procedure of the proposed acoustic model combination 
method in a multi-channel environment.  

Figure 1: Comparison of waveforms of (a) original clean speech, 
(b) noisy speech at 0 dB SNR, and (c) speech signal separated by 
using a Gaussian kernel-based mask 

3. PROPOSED ACOUSTIC MODEL COMBINATION 

Acoustic model adaptation such as parallel model combination 
(PMC) can be used to compensate for the remaining noise to fur-
ther improve the ASR performance. In this section, we explain the 
proposed acoustic model combination method incorporated with 
multi-channel source separation, where a noise model and SNR are 
estimated on the basis of a mask obtained from MMSS described 
in Section 2.

3.1. Overview of the proposed method 

Fig. 2 shows the procedure of the proposed acoustic model combi-
nation method. First, the process of MMSS described in Section 2 
is performed. In other words, mask information is estimated from 
binaural signals, and then the estimate of clean speech is then ob-
tained. From now on, we refer to such mask as speech mask be-
cause it contributes the estimation of clean speech.  Next, a 39-
dimensional feature vector is extracted from the target source sig-
nal, where 12 mel-frequency cepstral coefficients (MFCCs) and a 
log energy are concatenated with their deltas and delta-deltas. In 
the proposed method, a noise model is estimated using a noise 
mask which is defined by a speech mask subtracted from 1; the 
SNR value is estimated from the ratio between the average values 
of a speech mask and a noise mask over each utterance. After that, 
the noise-corrupted models are obtained by combining the clean-
trained models and the estimated noise model with the estimated 
SNR value. Finally, the Viterbi decoding of the estimated target 
source signal is done using the noise-corrupted models. 
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3.2. Parallel model combination 

In this paper, we adopt a log-normal PMC [4]. To this end, the 
clean-trained models and the estimated noise model in the cepstral 
domain are first transformed into the linear spectral domain by 
taking the logarithm and an inverse discrete cosine transform 
(DCT). Next, the noise-corrupted models in the linear spectral 
domain are calculated by adding the clean-trained models and an 
SNR-weighted noise model.

~ˆ

~ˆ
2g

g                                      (1) 

where  and  are the mean and variance of a clean-trained 
model, respectively; similarly, ~  and ~  are the mean and vari-
ance of the noise model,  and  are the mean and variance of a 
noise-corrupted model, and 

ˆ ˆ

g  is an estimated SNR value. Finally, 
the noise-corrupted models in the cepstral domain are obtained by 
taking the exponential followed by a DCT. 

As we can see in Eq. (1), a well-estimated noise model and 
exact SNR calculation are required for PMC. Thus, we propose a 
noise estimation method and an SNR estimation method for PMC 
in the next subsections. 

3.3. Mask-based noise model estimation 

Fig. 3 shows the procedure of the proposed mask-based noise 
model estimation (MNME) method. Here, a noise mask, ,
is defined as

),( jimN

),(1),( jimjim SN                              (2) 
where i and are the indices of the frequency channel and frame, 
respectively. Also,  is a speech mask obtained from the 
mask-estimation for estimating target speech. Similar to generating 
target speech, the noise signal is synthesized using the noise masks, 
and the MFCCs are then calculated from the synthesized noise 
signal. Finally, the noise model is estimated by calculating the 
means and variances of the MFCCs.

j
),( jimS

3.4. Mask-based SNR estimation for PMC 

The SNR value, g , in Eq. (1) is estimated using noise masks and 
speech masks. Fig. 4 shows the procedure of the proposed SNR 
estimation method. As a first step for estimating the SNR value, 
we first find the non-target speech frames using speech masks. 
Then, the SNR value is calculated as the ratio of the average val-
ues of the noise masks and speech masks over each utterance. 

3.4.1. Detection of non-target speech frames 

Figure 3: Procedure of the proposed noise model estimation me-
thod.

Figure 4: Procedure of the proposed SNR estimation method.

In order to detect non-target speech frame, we first calculate the 
speech mask averaged over all the frequency channels, , as  )( jmS

I

i
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I
jm

1
),(1)(                               (3) 

where I is the number of filterbank channels. Next, in order to 
estimate a threshold  for the detection of non-target speech 

frames, we estimate the mean, , and variance, , from the 
initial

2
mm

M  frames that are assumed to be non-target speech. In 
other words,
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where the first M frames are assumed to be non-target speech. In 
this paper, M  is set to 20. Finally, a set of the non-target speech 
frames, , can be obtained as S

)(| jmj SS                                   (5) 

where . Here mm is set to a value such that around 
90% of the initial frames are included in .M S

3.4.2. SNR estimation for PMC 

To estimate the SNR parameter for PMC, we calculate the average 
values of the noise masks and speech masks on the set of non-
target speech frames, denoted by  and , respectively, in the 

following equation. 
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where  is the number of frames belonging to the set S , and ||# S
I

i
NN jim

I
jm

1
),(1 is the noise mask averaged over all the fre-

quency channels. After that, the SNR parameter is estimated as  

N

S

g

g
g   .                                      (7) 

Finally, we apply g  to Eq. (1) to obtain the means and variances 
of noise-corrupted acoustic models. 
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Table 1. Word error rates (%) of the baseline system, the mask-based multi-channel source separation (MMSS) for an ideal mask, a
Gaussian kernel-based mask, and the proposed model combination method (MMSS+PMC). 

Baseline MMSS MMSS+PMC 

Gaussian kernel-based 
mask 

Gaussian kernel-based 
mask Mask Type - Ideal mask 

Angle SNR(dB) 0 10 20 0 10 20 0 10 20 0 10 20
10° 98.77 62.28 13.86 4.56 3.68 4.21 38.60 9.47 5.44 14.56 6.84 5.26
20° 97.88 56.14 11.75 4.39 3.86 4.39 42.11 9.12 5.09 14.21 6.67 5.09
40° 94.82 43.16 10.70 4.39 4.04 4.91 35.61 9.47 5.26 11.40 7.19 5.44

Average 97.16 53.86 12.10 4.45 3.86 4.50 38.77 9.35 5.26  13.39  6.90 5.26
54.37 4.27 17.80 8.52

4. SPEECH RECOGNITION EXPERIMENTS 

For the speech recognition experiments, a binaural database was 
artificially constructed using an HRTF function [7] in conjunction 
with a Korean speech corpus [8]; 18,240 utterances of the corpus 
were used to train the acoustic model, and 570 utterances were 
used as the target speech data. Each target speech utterance was 
transformed into a binaural signal and mixed with female speech 
localized at 10°, 20°, and 40° from the target signal.

The acoustic models were based on left-to-right triphone 
HMMs, and trained using the HTK version 3.2 Toolkit [9]. The 
number of Gaussian mixtures was 4 per state and all the triphone 
models were expanded from 42 monophones that included a si-
lence and a short pause model. The triphone model states were tied 
by employing a decision tree. As a result, we had 7,577 triphones 
and 2,487 states. For a language model, the lexicon size was 2,250 
words and a finite state network grammar was employed.

Table 1 shows the word error rates (WERs) of the baseline 
system, MMSS based on the ideal mask, the Gaussian kernel-based 
mask, and the proposed model combination method (MMSS+ 
PMC). In the baseline, noisy speech from the left channel was 
directly used for ASR. As shown in the table, the baseline system 
gave the highest WER because no noise compensation method was 
used. In contrast, MMSS with the ideal mask had the smallest 
WER since the ideal mask could result in the best performance for 
signal separation. However, the WER of MMSS with the Gaussian 
kernel-based mask was considerably increased at low SNRs com-
pared with MMSS with the ideal mask. On the other hand, the 
WER of the proposed model combination method was signifi-
cantly reduced at low SNRs, compared with MMSS with the Gaus-
sian kernel-based mask. As a result, it can be seen that the pro-
posed method relatively decreased the WER by 52.14% compared 
with the MMSS with the Gaussian kernel-based mask. 

5. CONCLUSION 

Although multi-channel source separation approaches are gener-
ally acceptable in noisy environments, the performance improve-
ment is restrictive at low SNRs due to residual noise signals con-
taminated in the estimated target signals. To reduce the effects of 
residual noise in the acoustic model domain, a parallel model 
combination technique was proposed here. In order to realize PMC, 
we also proposed a mask-based noise model estimation and a 
mask-based SNR estimation method. It was shown from speech 

recognition experiments that the proposed method achieved the 
relative WER reduction of 52.14% compared to a mask-based 
source separation using a Gaussian kernel-based mask. 
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