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ABSTRACT

This paper investigates a non-linear mapping approach to extract ro-
bust features for ASR and speech separation of overlapping speech.
Based on our previous studies, we continue to use two additional
sound sources, namely from the target and interfering speakers. The
focuses of this work are: 1) We investigate the feature mapping be-
tween different domains with the consideration of MMSE criterion
and regression optimizations, demonstrating the mapping of log mel-
filterbank energies to MFCC can be exploited to improve the effec-
tiveness of the regression; 2) We investigate the data-driven filtering
for the speech separation by using the mapping method, which can
be viewed as a generalized log spectral subtraction and results in bet-
ter separation performance. We demonstrate the effectiveness of the
proposed approach through extensive evaluations on the MONC cor-
pus, which includes both non-overlapping single speaker and over-
lapping multi-speaker conditions.

Index Terms— microphone array, speech separation, binary
masking, overlapping speech recognition, neural network

1. INTRODUCTION

Recently, a thrust of research has focused on techniques to efficiently
integrate inputs from multiple distant microphones with the goal of
improving ASR performance. The most fundamental and important
multi-channel method is the microphone array beamformer method,
which consists of enhancing signals coming from a pariticular loca-
tion by combining the individual microphone signals. The simplest
technique is the delay-and-sum (DS) beamformer, which compen-
sates for delays to microphone inputs so that the target signal from a
particular direction synchronizes while noises from different direc-
tions do not. Other more sophisticated beamforming methods, such
as superdirctive beamformer [1] and Generalized Sidelobe Canceller
(GSC), optimize the beamformer to produce a spatial pattern with a
dominant response for the location of interest. The main limitation
of these schemes is the issue of signal cancellation, which is more
serious in the prensence of overlapping speech. It is important to
note that the motivation behind microphone array techniques such
as the beamforming described above is to enhance or separate the
speech signals, and as such they are not designed directly in the con-
text of ASR. Improving the signal-to-noise ratio (SNR) of the signal
signals captured through distant microphones may not necessarily
be the best means of extracting features for robust ASR on distant
microphone data, particularly during periods of speaker overlap [2].

While the beamforming methods generally result in a linear
transformation, non-linear feature mapping approach using neural
networks has received considerable interest for robust automatic
speech recognition (ASR). The idea of the feature mapping method
is to obtain ‘enhanced’ or ‘clean’ features from the ‘noisy’ features

extracted from the distant microphone recordings. In pointing to
previous works on multi-channel feature mapping using neural net-
works for robust ASR (e.g. [3, 4]), we note that a microphone array
is used and feature mapping of a delay-and-sum (DS) enhanced
speech signal to clean speech signal is performed in MFCC domain.
In their mapping framework, a multi-layer perceptron (MLP) was
trained for each MFCC component. We distinguish our approach
by exploiting the redundant or irrelevant information in a full-vector
based mapping and by using additional sources of information to
improve the effectiveness of the mapping.

In our previous studies [5, 6], we explored the redundancy of the
higher order MFCC vectors to improve the effectiveness of the map-
ping. We also investigated the mapping of features from both target
and interfering distant sound sources, obtained by using the micro-
phone array techniques, to the clean target features. We achieved
encouraging results, in particular in the presence of overlapping
speech, thus motivating further investigation of this research direc-
tion. So far we performed the feature mapping between equivalent
domains (e.g. log mel-filterbank energy (MFBE), MFCC). In theory
the mapping need not be performed between equivalent domains.
In this paper, we firstly investigate the feature mapping between
different domains with the consideration of MMSE criterion and
regression optimizations. Secondly we investigate the data-driven
filtering for the speech separation by using the neural network based
mapping method.

2. MAPPING APPROACH

Let’s assume that we have both the direction of the target and in-
terfering sound sources, st and si respectively, through the use of
microphone array. Let st(n) and si(n) denote the feature vectors
extracted from the target and interfering sound sources at frame n,
respectively. In our mapping approach, we take those two input fea-
tures, st(n) and si(n), and map them to “clean” recordings. To
allow nonlinear mapping, we used a generic multilayer perceptron
(MLP) with one hidden layer, estimating the feature vector of the
clean speech c(n) associated with the n-th input frame:

ĉ(n) = f(st(n), si(n)) (1)

=

P∑

p=1

(
wp · sig

(
bp + wT

p,tst(n) + wT
p,isi(n)

))
+ b

where sig(·) and P are the sigmoidal activation function and the
number of the neurons employed in the hidden layer. The parameters
Θ = {wp, bp,wp, b} are obtained by minimizing the mean squared
error:

E =

N∑

n=1

||c(n) − ĉ(n)||2, (2)
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Fig. 1. Diagram of the regression-based speech recognition.

over the training examples. Here, N denotes the number of training
examples (frames). The optimal parameters can be found through
the error back-propagation algorithm [7]. Note that during training
this requires that parallel recordings of clean and noisy data are avail-
able while only the noisy features are required for the estimation of
clean data during testing.

With the assumption that the distribution of the target data is
Gaussian-distributed, minimizing the mean square error in (2) is
the result of the principle of maximum likelihood [8]. From the
perspective of Blind Source Separation (BSS) and Independent
Component Analysis (ICA), the principle of maximum likelihood,
which is highly related to the minimization of mutual information
between clean sources, can be also employed to estimated the clean
sources [9]. Their methods, however, lead to a linear transforma-
tion, and the probability densities of the sources must be estimated
correctly, while our mapping method is highly non-linear and does
not require the information concerning the probability densities of
the sources.

3. EXPERIMENTAL DATA AND SETUP

The Multichannel Overlapping Numbers Corpus (MONC) was used
to perform speech recognition experiments. In this corpus, there
are four recording scenarios [10]: S1 (no overlapping speech), S12
(with 1 competing speaker L2), S13 (with 1 competing speaker L3),
and S123 (with 2 competing speakers L2 and L3). The corpus is
divided into training data (6049 utterances) and per-condition data
sets for development/adaptation (2026 utterances) and testing (2061
utterances). In the feature mapping methods, the MLP is trained
from data drawn from the development data set which consists of
2,000 utterances (500 utterances of each recording scenario in the
development/adaptation set). The total number of training exam-
ples (frames) are 371,543. A diagram of the model training and
feature estimation is given in Figure 1. In this paper, two delay-and-
sum (DS) beamformer enhanced speech signals1 are used, although
DS enhanced speech with a subsequent binary masking post-filter
yield a marginal improvement in ASR performance [6]. The ASR
frontend generated 12 MFCCs and log-energy with corresponding
delta and acceleration coefficients. The more detailed descriptions
of recording configurations and speech recognition system can be
found in [10] and [6].

1In our studies, two beamformers are designed corresponding to the target
speech and the interfering speech (In S123 scenario, one beamformer is di-
rected to the target speech and the other directed to the middle position of the
two interfering speakers.). Note that in S1 scenario (only one active speaker),
the output of one beamformer is noise-like.
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Fig. 2. Probability density functions (pdf) of the different represen-
tations of the clean speech. Upper: pdf of the amplitudes at 200 Hz
and 400 Hz; Middle: pdf of the first and second order log MFBEs;
Lower: pdf of the first and second order MFCCs.

4. FEATURE MAPPING BETWEEN DIFFERENT
DOMAINS

In this section, we investigate the mapping method between differ-
ent domains. We selected the following three domains: spectral
amplitude after Fourier transformation, log mel-filterbank energies
(log MFBE), and mel-frequency cepstral coefficients (MFCC). As
we pointed out in the above section, the target data c(n) with a
Gaussian distribution is optimal from the point view of the mini-
mum mean square error [8]. We investigated the histograms of the
features of clean speech as shown 2. It was found that: (1) the PDFs
of the amplitudes of the clean speech are far from being Gaussian, as
previously widely reported in the literature, (2) the PDFs of the log
MFBEs are bi-modal (the lower modal may be due to the low SNR
segments), and (3) the PDFs of MFCCs have approximative Gaus-
sian distributions. Therefore we selected the MFCCs as the target
domain in our mapping method.

In fact, the mapping to MFCCs is more straightforward in the
context of the ASR system,in which MFCCs are used as the features.
Furthermore, delta and acceleration MFCCs are usually used in the
recognizer. The delta coefficient at frame n are computed using the
following regression formula [11]:

cd(n) =

∑
θ θ[c(n + θ) − c(n − θ)]

2
∑

θ θ2
(3)

where c(n+θ) and c(n−θ) denote the corresponding static MFCC
vectors at frame (n + θ) and (n − θ), respectively. The MMSE of
the delta MFCC vectors can be formulated as

Ed =
∑

n

||cd(n) − ĉd(n)||2

=

∑
n ||∑θ θ{[c(n + θ) − ĉ(n + θ)] + [c(n − θ) − ĉ(n − θ)]}||2

(2
∑

θ θ2)2

≈
∑

n

∑
θ θ2{||c(n + θ) − ĉ(n + θ)||2 + ||c(n − θ) − ĉ(n − θ)||2}

(2
∑

θ θ2)2

≈ 2
∑

θ θ2 · ∑n{||c(n + θ) − ĉ(n + θ)||2}
(2

∑
θ θ2)2

=
E

2
∑

θ θ2

where we assume [c(n + θ) − ĉ(n + θ)] and [c(n − θ) − ĉ(n −
θ)] are uncorrelated. Therefore, MMSE in the MFCCs in (2) also
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Table 1. Recognition accuracies (as percentages) of the mapping
method between different domains. Upper half of the table repre-
sents accuracies for no adaptation case and lower half of the table
represents accuracies for adaptation case. The best system based
upon average accuracy across all the conditions is in boldface fonts.

S1 S12 S13 S123 Average

amplitude 90.2 85.8 87.7 83.1 86.7
log MFBE 90.6 87.2 88.9 84.0 87.7

MFCC 90.6 86.2 88.2 83.1 87.0

amplitude 90.5 86.4 87.8 83.9 87.2
log MFBE 90.8 88.1 89.2 85.0 88.3

MFCC 90.8 87.2 88.2 83.8 87.5

results in MMSE in the delta coefficients (likewise for acceleration
coefficients), which can help the ASR performance.

We performed the three corresponding ASR experiments by
mapping of amplitudes, log MFBE, and MFCCs of the two DS
enhanced speech to MFCCs 2. Table 1 shows the recognition re-
sults in terms of recognition accuracies for the different experiments
described above. adaption of acoustic models, respectively. It is
found that ASR performance drops when going from single non-
overlapping speaker condition S1 to overlapping speaker conditions
S13, S123, and S123 having the worst performance.

The mapping of the log MFBEs from two DS enhanced speech
to MFCCs yields the best ASR performance, especially in overlap-
ping speech scenarios. This may be explained by the fact that the
smaller dynamic range of the log MFBE vectors as shown in Fig-
ure 2 is advantageous for regression optimization [12]. The gains
from model adaptation are marginal. This may be explained by the
fact that the mapping methods evaluated are already very effective
at suppressing the influence of interfering speakers on the extracted
features. Hence, there is much reduced mismatch between the four
recording, obviating the need for adaptation to each scenario. Fig-
ure 3 shows an example of the mapped MFCC trajectories compared
with the ones of the clean speech in S12 recording scenario. It can
be seen that the mapping method results in good approximation to
the clean speech.

5. REGRESSION-BASED SPEECH SEPARATION

Let st and si respectively denote the beamformer-enhanced target
speech and interfering speech, and let c denote the reference clean
speech. By applying a window function and analysis using short-
time Fourier transform (STFT), in the time-frequency domain we
have complex vector St(n), Si(n), and C(n), where n denotes
frame indexes. In order to reduce the dynamic ranges of direct spec-
tral amplitudes, we instead obtain the log amplitudes:

S
(L)
t (n) = log |St(n)|,

S
(L)
i (n) = log |Si(n)|,

C(L)(n) = log |C(n)|.
2When mapping MFCCs to MFCCs, the 20-order MFCCs were used [6].

Through this paper, the size of the MLPs across the different ASR exper-
iments were kept same in this paper. In other words, the total number of
parameters in the MLP was set up experimentally to be equal to 10% of the
training examples/frames.

3In S12 condition the two speakers are more closer than S13 condition
which can explain why S12 condition is having lower performance than S13
condition.
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Fig. 3. Effect of the mapping method on the first and second MFCC
trajectories in S12 recording scenario. bold solid line: MFCC tra-
jectories of the clean speech; dash-dot line: MFCC trajectories of
beamformed speech. thin solid line: the mapped MFCC trajectories
from log mel-filterbank energies (log MFBE).
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Fig. 4. Diagram of regression-based speech enhancement.

By employing a multi-layer perceptron (MLP) regression method,
we can obtain the estimated version of clean speech as:

Ĉ(L)(n) = f(S
(L)
t (n),S

(L)
i (n)) (4)

where f(·) is the non-linear function as in (1), which parameters can

be optimized according to (2). Once Ĉ(L)(n) is obtained, separated
target speech can be generated by taking the exponential operation
and performing inverse short-time Fourier transform (ISTFT) with
the combination of the phase of the DS enhanced speech as shown
in Figure 4.

The use of MMSE in the log spectral domain is also consistent
with the fact that log spectral measure is more related to the physio-
logical interpretation of the log spectral energies and that some better
speech enhancement results have been reported with log spectral dis-
tortion measures [13]. In [14], a multichannel MMSE estimator of
the speech spectral amplitudes was derived for the reduction of un-
correlated noise. However, it can handle additive noise only and has
to makes the assumptions regarding the distributions of the speech
and noise spectra. The proposed mapping method can be viewed
as a generalized log spectral subtraction, and makes no assumptions
regarding the additive noise (or interfering speech), nor about any
distributions of he speech and noise spectra.

We evaluated the mapped speech signals using source-to-
distortion ratio (SDR), which is defined as

SDR [dB] = 10 log10

∑N
n=1 ‖C(L)(n)‖2

∑N
n=1 ‖C(L)(n) − Ĉ(L)(n)‖2 , (5)
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where C(L)(n) is the log spectral amplitude vector from the clean

speech and Ĉ(L)(n) is the estimated version. Here N denotes
the number of frames during one utterance. The SDR is averaged
over the number of utterances. For comparison we also evaluate
the DS-enhanced target speech signals (“DS”) and the ones with a
subsequent binary masking post-filte (“DSmask”) [15]. Note that
while “DSmask” provides a hard-decision based on spatial filtering,
the proposed method “DSmapping” yields a regression-based soft-
decision. Figure 5 shows the average SDR for different methods.
Firstly, it can been seen that SDR drops as the amount of overlap
increases. Secondly, expect for S1 condition “DSmask” yields sig-
nificantly higher SDR than “DS”, and “DSmapping” obtains highest
SDR values, which demonstrates that the mapped speech results in
best approximation to the clean speech. Finally, informal listenings
show that the interfering speech is well suppressed by using the non-
linear regression method. We also evaluated the ASR performance
of different speech. As shown in Table 2, in overlapping speech
conditions the mapped speech give the better recognition accuracies
compared with binary-masked version, especially in S123 condi-
tions. Note that the differences of mapping method between Table 1
and Table 2.

Table 2. Recognition accuracies (as percentages) of different types
of speech signals.

S1 S12 S13 S123 Average

DS 89.0 57.0 67.7 48.5 65.6
DSmask 89.8 81.7 82.4 69.3 80.8

DSmapping 88.3 83.5 85.5 80.2 84.4
DS 90.3 59.3 69.5 50.2 67.3

DSmask 90.1 83.0 85.3 74.2 83.2
DSmapping 88.6 84.4 86.0 80.6 84.9

6. CONCLUSIONS AND FUTURE WORKS

We have presented the mapping approach for the further improve-
ment the recognition performance of overlapping speech and for
speech separation. The proposed approach achieves higher recogni-
tion accuracies on overlapping multi-speaker conditions while keep-
ing the performance of the ASR system on single non-overlapping
condition intact. The separated speech involves less distortions while
well suppressing the interfering speech.

In future we plan to extend this work to more realistic environ-
ments (e.g. overlapping speech encountered in meeting scenarios)
and to incorporate more advanced beamforming techniques. On the
other hand, we plan to develop the soft masking filter for the speech
separation by constraining the regression weights.
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