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ABSTRACT

Statistical voice conversion is very effective for enhancing body
transmitted speech recorded with Non-Audible Murmur (NAM)
microphone. In this method, a probabilistic model to convert body
transmitted speech into natural speech is trained previously. Be-
cause acoustic characteristics of body transmitted speech is sensitive
to recording conditions such as a location of NAM microphone, sig-
nificant degradation of the conversion performance is often caused
in practical situations by acoustic mismatches between training and
conversion processes. To alleviate this problem, we propose unsu-
pervised acoustic compensation methods for body transmitted voice
conversion. Experimental results demonstrate that the proposed
methods significantly reduce the quality degradation of converted
speech caused by the acoustic mismatches.

Index Terms— Acoustic Compensation, CSMAPLR, CMLLR,
CMS, Body Transmitted Voice Conversion

1. INTRODUCTION

Recently a cellular phone has enabled us to communicate with each
other very conveniently. It makes people aware that using a cellular
phone is problematic in some situations, e.g., under extremely heavy
noisy conditions or under very quiet conditions (e.g., in a library). In
order to alleviate these essential problems of speech communication,
several body-conductive microphones, of which one good property
is external noise robustness, have been developed [1, 2].

As one of the promising body-conductive microphones, we have
focused on Non-Audible Murmur (NAM) microphone [2]. This mi-
crophone is attached on the skin behind the user’s ear as shown in
Fig. 1. One of advantages of NAM microphone is to record various
types of body transmitted speech such as normal speech and consid-
erably small whisper. However, body transmitted speech is usually
distorted due to some factors, i.e., the lack of radiation characteris-
tics from lips, low-pass characteristics of the body transmission, and
so on.

In order to improve the quality of body transmitted speech, the
body transmitted speech enhancement based on statistical voice con-
version has been proposed [3, 4]. In this method, a conversion model
is trained in advance using a parallel data set consisting of utterance
pairs of the body- and air-transmitted voices. The trained model al-
lows the conversion from body transmitted speech into the target air-
transmitted speech without any linguistic information. This method
dramatically improves the quality of the body transmitted speech un-
der the same recording conditions between training and conversion
processes. However, we empirically know that the acoustic charac-
teristics of body transmitted speech are severely affected by record-

Thanks to MIC SCOPE for supporting this research in part.

NAM
microphone

Fig. 1. Attaching location of NAM microphone.

ing conditions such as the attaching location of NAM microphone,
the gain setting of an amplifier, and so on. Resulting acoustic varia-
tions of body transmitted speech, which is much larger than those of
air-transmitted speech, would cause significant quality degradation
of the converted voice due to the mismatched conversion model for
input acoustic characteristics.

In order to address this problem, we propose unsupervised
acoustic compensation methods for body transmitted voice con-
version. In this paper, we deal with the conversion from body
transmitted ordinary speech (BTOS), which is defined as normal
speech recorded with NAM microphone, into air transmitted natural
speech. First we investigate an impact of the acoustic variations
caused by different positions of NAM microphone on the conver-
sion performance. And then, we apply Cepstrum Mean Subtraction
(CMS) [5], Constrained Maximum Likelihood Linear Regression
(CMLLR) [6], and Constrained Structural Maximum A Posteriori
Linear Regression (CSMAPLR) [7] to the acoustic compensation
for the body transmitted voice conversion. Experimental results
demonstrate that 1) significant quality degradation of the converted
speech is caused by the attaching position change of NAM micro-
phone and 2) the proposed compensation methods are very effective
for alleviating the quality degradation.

This paper is organized as follows. In Section 2, we describe the
conversion method from BTOS into natural speech. Acoustic com-
pensation methods for the body transmitted voice conversion are ex-
plained in Section 3, and these methods are experimentally evaluated
in Section 4. Finally, this paper is summarized in Section 5.

2. BODY TRANSMITTED VOICE CONVERSION

2.1. Body Transmitted Ordinary Speech (BTOS)

Fig. 2 shows an example of spectrograms of speech recorded with
a headset microphones and those with NAM microphone. There are
differences of spectral structures between air-conductive speech and
BTOS. In particular, higher frequency components of the body trans-
mitted voices are usually attenuated. Consequently BTOS sounds
very muffled. Furthermore, some phonemes with large power on
higher frequency bands such as unvoiced fricatives often lose their
specific acoustic cue.
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Fig. 2. An example of spectrograms of ordinary speech recorded (a)
with air-conductive microphone and (b) with NAM microphone.

2.2. Acoustic Features

As a source feature, we employ a spectral segment vector. Let xt is a
mel-cepstral vector at a frame t. We construct a concatenated vector
ct = [x�

t−n · · ·x�
t · · ·x�

t+n]� over the current ±n frames, where
the symbol � indicates transpose. And then, the spectral segment
vector Xt at frame t is extracted by PCA as follows:

Xt = Dct − d, (1)

where D is the transformation matrix of PCA, and d = Dc̄. The
vector c̄ is the mean vector of ct within all training data for PCA.

As the target features, we employ the concatenated static and
dynamic feature vector Yt = [y�

t Δy�
t ]�, where yt is the static

feature vector, and Δyt is the delta feature vector of target data at
frame t.

2.3. Feature Conversion Based on Maximum Likelihood [4]

The joint probability density of the source and target feature vectors
is modeled by a GMM as follows:

P (Zt|–) =

MX
m=1

wmN (Zt; —(Z)
m ,Σ(ZZ)

m ), (2)

where Zt is the joint feature vector Zt = [X�
t Y �

t ]�. The symbol
N () indicates the normal distribution. The number of mixture com-

ponents is M . – is the model parameter including wm, —
(Z)
m , and

Σ
(ZZ)
m , which are the weight, mean vector, and covariance matrix

of the m-th mixture component, respectively. —
(Z)
m and Σ

(ZZ)
m are

represented by

—(Z)
m =

"
—

(X)
m

—
(Y )
m

#
, (3)

Σ(ZZ)
m =

"
Σ

(XX)
m Σ

(XY )
m

Σ
(Y X)
m Σ

(Y Y )
m

#
, (4)

where the matrix Σ
(XX)
m and Σ

(Y Y )
m are the covariance matrices

of the m-th mixture component of the source and that of the target,

respectively. The matrix Σ
(XY )
m and Σ

(Y X)
m are the cross covariance

matrices of the m-th mixture component of the source and that of the
target, respectively. These covariance matrices are completely full.

Let X = [X�
1 · · · X�

T ]� and Y = [Y �
1 · · · Y �

T ]� are time
sequences of the source and the target features, respectively. The
converted static feature vector sequence is determined so that the fol-
lowing approximated conditional probability density is maximized.

P (Y |X, –) � P (m|X, –)P (Y |X, m, –), (5)

where m = [m1 · · · mT ]� is a mixture component sequence. First,
suboptimum mixture component sequence m̂ is determined by

m̂ = arg max
m

P (m|X, –). (6)

And then, the converted static feature vector ŷ is obtained by

ŷ = arg max
y

P (Y |X, m̂, –), (7)

subject to Y = Ey,

where E is a window matrix to expand the static feature sequence
into the static and dynamic feature sequence. Furthermore, the qual-
ity of the converted voice is dramatically improved by considering
global variance of the converted feature [4].

3. INTRODUCING ACOUSTIC COMPENSATION INTO
BODY TRANSMITTED VOICE CONVERSION

When NAM microphone is used in a practical situation, it seems
impossible to record under the completely same conditions, e.g.,
the exactly same location of NAM microphone. Therefore, it is in-
evitable to cope with the acoustic variations of BTOS caused by such
a change of recording conditions. As a practical and convenient way,
we propose unsupervised acoustic compensation methods using only
the source features without any linguistic constraints and any target
features.

3.1. CMS

CMS [5] effectively compensates static acoustic features character-
ized by multiplicative distortions.

We apply CMS to the mel-cepstral vector before extracting the
spectral segment feature Xt described in Section 2.2. The vector x′

t

processed by CMS is given by x′
t = xt − x̄t, where x̄t is the mean

vector of xt within an utterance. The final spectral segment feature
vector X ′

t is extracted as follows :

X ′
t = D′c′

t − d′, (8)

where c′
t = [x′�

t−n · · · x′�
t · · · x′�

t+n]� and d′ = D′c̄′. The
matrix D′ and the vector c̄′ are the PCA transformation matrix and
the mean vector of c′

t within all training utterances for PCA, respec-
tively.

3.2. CMLLR

CMLLR [6] reduces the mismatch between the model and adaptation
data. CMLLR estimates multiple linear transformations in individ-
ual regression classes, which are dynamically defined according to
the amount of adaptation data using a regression tree, by maximizing
the likelihood of the model for the adaptation data [8].

We apply the CMLLR transformation to the source features for
compensating their acoustic variations. The transformed source fea-
ture vector is given by

X̂t = ArXt + br = Wr‰(t), (9)
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where Wr is the extended transform in the regression class r,
[br Ar], and ‰(t) is the extended source feature vector, [1 X�

t ]�.
To perform unsupervised compensation, the CMLLR transform

is estimated so that a likelihood of the marginal distribution for the
adaptation source data X is maximized as follows:

Ŵr = arg max
Wr

Z
P (X, Y |Wr, –)dY . (10)

Because the probability density is modeled by a GMM, EM algorith-

mis is employed. The updated transformation matrix Ŵr is given by

wri = (αci + k(ri))G(rii)−1, (11)

where wri and ci are the i-th row vector of Ŵr and the extended
cofactor row vector of Ar , and α is found by solving a quadratic
equation [6]. Then k(ri) and G(rii) are given by

G(rij) =

MrX
m=1

pm(i, j)

TX
t=1

γm(t)‰(t)‰(t)�, (12)

k(ri) =

MrX
m=1

pm(i)—m

TX
t=1

γm(t)‰(t)�−
dX

j=1,j �=i

wjG(rij), (13)

where pm(i) and pm(i, j) are the i-th row vector and the (i, j)-th el-

ement of the covariance matrix Σ
(XX)
m , respectively. Mr and γm(t)

are the number of mixture components in class r and the posterior
probability of the m-th mixture component given Xt.

When applying the CMLLR transformation in the model-space,
the adapted model parameters are given by

—̂(Z)
m =

»
A0

r—
(X)
m − b0

r

—(Y )
m

–
, (14)

Σ̂
(Z)

m =

"
A′

rΣ
(XX)
m A′�

r A′
rΣ

(XY )
m

Σ
(Y X)
m A′�

r Σ
(Y Y )
m

#
, (15)

where —̂
(Z)
m and Σ̂

(Z)
m are the adapted mean vector and covariance

matrix of the m-th mixture component, respectively. Note that A′
r

= A−1
r and b′

r = A′
rbr . Parameters of all mixture components are

adapted using corresponding transforms.
If using Maximum Likelihood Linear Regression (MLLR) [6]

instead of CMLLR, it is difficult to robustly estimate multiple trans-
forms because G(rii) shown by Eq. (12) is easy to be a rank deficient
matrix because G(rii) is calculated by a weighted sum of mean vec-
tors in MLLR. Because the number of mixture components is very
limited in the GMM-based voice conversion, this problem often hap-
pens when increasing the number of regression classes.

3.3. CSMAPLR

It is essentially difficult to robustly estimate multiple transforms by
the CMLLR estimation when using a small amount of adaptation
data. An over-fitting problem easily happens especially in the unsu-
pervised adaptation of the GMM. In order to alleviate this problem,
we employ the CSMAPLR [7].

The CSMAPLR transform is estimated, so that a likelihood of
the marginal distribution for the adaptation source data X is maxi-
mized as follows:

Ŵr = argmax
Wr

Z
P (X, Y |Wr, –)P (Wr)dY , (16)

where the prior distribution function P (Wr), which is the matrix
variate normal distribution, is defined by

Evaluation dataAdaptation data

Training data
Recording

condition 1

Recording

condition 2

100 sentences

50 sentences 50 sentences

Different NAM 

microphone locations

Fig. 3. Data sets for experiments.

P (Wr) ∝ |Ψ|−(d+1)/2|Φ|−d/2

· exp

»
−1

2
tr{(Wr − H)�Ψ−1(Wr − H)Φ−1}

–
,(17)

where d is the number of the dimension of the source feature, and Ψ,
Φ and H are the hyperparameters for this distribution. The trans-
formation matrix of the parent’s node in the regression tree is used
as H . We fix Ψ and Φ to Ψ−1 = C · I and Φ−1 = I , where I
is the unit matrix, respectively. The scaling of P (Wr) is controlled
by only a scalar coefficient C. The transformation matrix Wr is
updated as follows:

wri = (αci + n(ri))V (rii)−1. (18)

Note that n(ri) and V (rii) are given by

V (rii) = G(rii) + C · I, (19)

n(ri) = k(ri) + C · h(i), (20)

where h(i) is the i-th row vector of H .

4. EXPERIMENTAL EVALUATION

4.1. Experimental Conditions

We simultaneously recorded BTOS and air-conductive speech. Two
Japanese male speakers uttered in two different conditions, in which
only NAM microphone location was different (left or right side of
the neck) and the others were kept as constant as possible. First,
each speaker uttered 100 phonetically balanced sentences while fix-
ing the attaching location of NAM microphone. Next, he switched
the attaching side of NAM microphone, and then, he again uttered
the same sentences. One speaker uttered one sentence set (includ-
ing 100 × 2 sentences) and the other speaker uttered two different
sentence sets. Therefore, totally three sentence sets were recorded.
Sampling frequency was 8 kHz.

In order to evaluate the conversion performance in the mis-
matched conditions, each sentence set was used as shown in Fig.
3. In the training of the conversion model, 50 sentences in the first
recording condition were used. Different 50 sentences in the second
recording condition were used as the test data. In the CMLLR or
CSMAPLR compensation, the transformation matrices were esti-
mated using a part of 50 sentences in the second recording condition,
which were not included in the test data, as the adaptation data. Note
that these adaptation data were used to train the conversion model
in the matched condition. In the CMS compensation, a cepstral
mean vector calculated from each sentence was used for the same
sentence in the training. On the other hand, a cepstral mean vector
calculated from the previous sentence was used in the evaluation
assuming a practical situation. These evaluation processes were
again conducted by swapping data in the first recording condition
for those in the second one.
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Fig. 4. Mel-cepstral distortion with power coefficient as a func-
tion of the number of adaptation sentences. CMLLR (Global) and
(Multiple) show the result of CMLLR compensation with the global
transform and that with the multiple transforms. The mel-capstral
distortion in the matched condition is 3.93 dB.

We evaluated four conversion models in the mismatched condi-
tion, i.e., 1) no compensation, 2) CMS, 3) CMLLR, or 4) CSMAPLR.
We also evaluated the conversion model in 5) the matched condition.
We conducted both the objective and the subjective evaluations. In
the objective evaluation, the mel-cepstral distortion between the
converted and target features was measured. In the subjective eval-
uation, a pair of the different two types of the converted speech
was randomly presented to the listeners, and then they were asked
which voice sounded more natural. Each listener evaluated every
pair-combination of all types of the converted speech 1. The number
of listeners was 6 including 3 males and 3 females.

The 0-th through 16-th mel-cepstral coefficients were adopted as
the spectral parameter. The 34-dimensional source segment feature
was calculated from a current ±4 frames. The number of mixture
components of a GMM was set to 64. In the CMLLR or CSMAPLR
compensation, the hyperparameter C and the threshold of occupancy
in each regression class were set to 105 and 1000, respectively.

4.2. Experimental Results

Fig. 4 shows a result of the objective evaluation. The acoustic vari-
ations due to the change of the location of the NAM microphone
make mel-cepstral distortion significantly larger. The proposed CMS
compensation effectively alleviates this degradation of the conver-
sion performance. The proposed CMLLR compensation using the
global transform causes further improvements of the conversion per-
formance when using more than a few adaptation sentences. How-
ever, using multiple transforms causes the performance degradation
because of the over-fitting problem. The proposed CSMAPLR com-
pensation effectively alleviates this problem. Consequently, it al-
ways outperforms the CMLLR compensation.

Fig. 5 shows the preference score on speech quality. The change
of the NAM microphone location causes the significant quality
degradation. The proposed compensation methods effectively re-
cover the converted speech quality. The CSMAPLR compensation
using 10 adaptation sentences causes significantly better converted
speech than the CMS compensation. These results are very similar
to as observed in the objective evaluation.

1Several samples are available from
http://spalab.naist.jp/˜tomoki/ICASSP/AdaptBTVC/index.html

0

20

40

60

80

 100

No
compensation

CMS CSMAPLR Matched
condition

95% Confidence interval

Proposed

Mismatched conditions

Pr
ef

er
en

ce
 sc

or
e 

[%
]

Fig. 5. Results of preference test on speech quality. 10 sentences
were used for adaptation data in the CSMAPLR compensation.

5. CONCLUSION

We proposed unsupervised acoustic compensation methods for the
body transmitted voice conversion based on CMS, CMLLR, or
CSMAPLR. Experimental results of the objective and subjective
tests demonstrated that the proposed compensation methods can
effectively alleviate the degradation of the conversion performance
in the mismatched condition between training and conversion pro-
cesses. Moreover, they showed that CSMAPLR is the most effective
among the proposed methods when using more than only a few
adaptation data.
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