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ABSTRACT
This paper proposes a simultaneous modeling of spectrum and F0

for voice conversion based on MSD (Multi-Space Probability Dis-
tribution) models. As a conventional technique, a spectral conver-
sion based on GMM (Gaussian Mixture Model) has been proposed.
Although this technique converts spectral feature sequences nonlin-
early based on GMM, F0 sequences are usually converted by a sim-
ple linear function. This is because F0 is undefined in unvoiced seg-
ments. To overcome this problem, we apply MSD models. The
MSD-GMM allows to model continuous F0 values in voiced frames
and a discrete symbol representing unvoiced frames within an uni-
fied framework. Furthermore, the MSD-HMM is adopted to model
long term correlations in F0 sequences.

Index Terms— voice conversion, F0 conversion, MSD-GMM,
MSD-HMM

1. INTRODUCTION

Voice conversion is a technique for converting a certain speaker’s
voice into another speaker’s voice. It can modify speech charac-
teristics using conversion rules statistically extracted from a small
amount of data . One of typical spectral conversion frameworks is
based on a Gaussian Mixture Model (GMM) [1]. This method real-
izes a continuous mapping based on soft clustering. A more accurate
formulation of spectral conversion based on ML (Maximum Likeli-
hood) criterion has been presented [2]. In the ML-based conversion,
both training and conversion process are consistently derived based
on the single ML objective function.

In the conventional GMM-based method, spectral feature se-
quences are nonlinearly converted based on GMM. However, F0

sequences are converted by a simple linear function. This is be-
cause F0 is undefined in unvoiced segments; therefore F0 sequences
cannot be modeled by neither continuous nor discrete distributions.
In the voice conversion system, there are four types of F0 combi-
nations of the source and target features (“voiced-voiced,” “voiced-
unvoiced,” “unvoiced-voiced” and “unvoiced-unvoiced”). Although,
a method which focuses only on “voiced-voiced” features has been
proposed [3], this method may be insufficient as a statistical model
for accurately representing whole F0 sequences. In this paper, we
propose a method for simultaneous modeling of spectrum and F0

based on Multi-Space Probability Distribution (MSD) models [4].
In the proposed method, each feature of “voiced-voiced,” “voiced-
unvoiced,” “unvoiced-voiced” and “unvoiced-unvoiced” is modeled
in a different probabilistic space. Thus the proposed method can
convert voiced segments into unvoiced segments and vice versa, if
the spaces of “voiced-unvoiced” or “unvoiced-voiced” features are
selected in the convertion process. In this paper, we use MSD-GMM
and MSD-HMM as MSD models. The method based on MSD-
GMM can convert F0 nonlinearly. Furthermore, the MSD-HMM
is adopted to model long time correlations in F0 sequences.

The paper is organized as follows. Section 2 explains the con-
ventional voice conversion technique based on GMM. The voice
conversion techniques based on MSD-GMM and MSD-HMM are
described in Section 3 and Section 4, respectively. Experimental
results are reported in Section 5. Finally, conclusions are given in
Section 6.

2. VOICE CONVERSION BASED ON GMM
To convert spectral features of a source speaker X to a target
speaker Y , the joint probability density of two speaker’s fea-

tures are modeled by GMM. Let a vector Zt =
ˆ
X�

t , Y �
t

˜�
be a joint feature vector of the source one Xt and the target
one Yt at time t. In the GMM-based voice conversion, the vec-

tor sequence Z =
ˆ
Z�

1 , Z�
2 , . . . , Z�

T

˜�
is modeled by GMM

λ = {wi, μi,Σi | i = 1, 2, . . . , M} . The output probability of Z
given GMM λ can be written as follows:

p (Z |λ) =

TY
t

MX
i

wi N (Zt|μ(Z)
i ,Σ

(Z)
i ) (1)

μ
(Z)
i =

"
μ

(X)
i

μ
(Y )
i

#
, Σ

(Z)
i =

"
Σ

(XX)
i Σ

(XY )
i

Σ
(Y X)
i Σ

(Y Y )
i

#
(2)

where M is the number of mixtures, wi is the mixture weight of

the i-th component, μ
(·)
i and Σ

(·)
i is the mean vector and covariance

matrix, respectively.

2.1. Maximum likelihood spectral conversion
In the maximum likelihood spectral conversion [2], the optimal se-

quence of the target feature vectors Y =
ˆ
Y �

1 , Y �
2 , . . . , Y �

T

˜�
given a source feature vector sequence X =

ˆ
X�

1 , X�
2 , . . . , X�

T

˜�
is obtained by maximizing the following conditional distribution:

p (Y |X , λ) =

TY
t

MX
i

p(mt = i|Xt, λ)p(Yt|Xt, mt = i, λ) (3)

where m = (m1, m2, . . . , mT ) is a mixture index sequence. The
conditional distribution given X also becomes a GMM, and its out-
put probability distribution can be written as follows:

p (Yt|Xt, mt = i, λ) = N (Yt|Ei(t), Di) (4)

and

Ei(t) = μ
(Y )
t + Σ
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Since equation (3) includes latent variables, the optimal sequence of
Y is estimated via the EM algorithm. The EM algorithm is an itera-
tive method for approximating the maximum likelihood estimation.
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It maximizes the expectation of the complete data log-likelihood so
called Q-function (auxiliary function):

Q(Y , Ŷ ) =
X
all m

p(Y , m|X , λ) log p
“
Ŷ , m

˛̨
X , λ

”
(7)

Taking the derivative of the Q-function, the spectral sequence Ŷ
which maximizes the Q-function is given by

Ŷ =
“
D−1

”−1

D−1E (8)

where

D−1 = diag
h
D−1

1 , D−1
2 , · · · , D−1

T

i
(9)
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D−1Et =
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γi(t)D
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i Ei(t) (12)

γi(t) = p(mt = i|Xt, Yt, λ) (13)

2.2. F0 conversion
In the conventional method, F0 is converted linearly using the fol-
lowing equation:

p
(Y )
t =

p
(X)
t − μ(X)

σ(X)
× σ(Y ) + μ(Y )

(14)

where p
(X)
t and p

(Y )
t are input and converted F0 values, respectively,

μ(·) and σ(·) are the mean and the standard deviation of F0, respec-
tively.

3. VOICE CONVERSION BASED ON MSD-GMM
3.1. Feature modeling by MSD
We consider G spaces (R1, R2, · · · , RG) shown in Fig. 1, which
specified by space index g = 1, 2, · · · , G, where Rg is ng-
dimensional space. Each space Rg has a probability density function
(Nn1

1 ,Nn2
2 , · · · ,NnG

G ) and its probability (c1, c2, · · · , cG), wherePG
g=1 cg = 1. Each event E is represented by a random variable o

which consists of a continuous random variable x ∈ Rn and a set
of space indices X , that is,

o = (X , x) (15)

where all spaces specified by X are n-dimensional. The observation
probability of o is defined by

p(o) =
X

g∈S(o)

cgNng
g (V (o)) (16)

where V (o) = x, S(o) = X . We assume that Rg contains only
one sample point if ng = 0. Accordingly, letting P (E) be the prob-
ability distribution, we haveZ

p(o)do =

GX
g=1

cg

Z
Nng

g dx = 1 (17)

It noted that, although N 0
g (V (o)) does not exist since Rg contains

only one sample point, for simplicity of notation, we defines as
N 0

g (V (o)) = 1.
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Fig. 1. MSD and observation vectors
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Fig. 2. F0 modeling based on MSD

3.2. Modeling of spectrum and F0

In the proposed method based on MSD models, a joint feature se-

quence Z =
ˆ
Z�

1 , Z�
2 , · · · , Z�
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˜�
, Zt =

ˆ
X�

t , Y �
t

˜�
consists

of spectral and F0 feature vectors, where Xt =
h
c
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are a source and target vector, respectively. Each feature vector con-

sists of spectrum feature c
(·)
i , F0 feature p

(·)
i and their dynamic fea-

tures denoted by Δ(·). Fig. 2 shows F0 modeling based on MSD.
In the proposed method, there are four types of F0 combination
of source and target features (“voiced-voiced,” “voiced-unvoiced,”
“unvoiced-voiced” and “unvoiced-unvoiced”). Each feature is mod-
eled in a different probabilistic space by a single Gaussian distribu-
tions.

3.3. F0 conversion
In the conversion process based on MSD, first, the converted se-
quences are determined whether these are voiced or unvoiced seg-
ments; if the input is “unvoiced” symbol, the posterior distribution
are determined using the space weight. If the input is voiced feature,
next, the values of each voiced segment are estimated. These F0

values are generated from equation (8) similarly to the conventional
spectral conversion.
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4. VOICE CONVERSION BASED ON MSD-HMM
To perform modeling of long time correlations in F0 sequences,
MSD-HMMs are constructed which take account of phonetic con-
texts. However, context labels of input sequences are unknown in
the conversion process, it should be estimated from input feature
sequences. This means that conversion is performed based on one
huge HMM in which context labels are regarded as latent variables.
Fig. 3 shows the procedure of constructing one huge MSD-HMM.
First, context dependent HMMs are constructed. Second, to over-
come the overtraining problem, HMM states are shared by using a
context clustering technique [5]. Furthermore, to model long time
correlations more flexibly, sharing states along time are allowed as
shown in the right figure of Fig. 4. Third, to regard contexts as
hidden variables, one huge HMM is constructed by combining all
HMMs dependently on contexts. Paths are added from the final
states of HMMs to the initial states as shown in the right figure of
Fig. 5. However, the computational complexity of model parame-
ter re-estimation also becomes huge, because of the huge network
of state transition. To overcome this problem, an HMM topology is
minimized by assuming that states shared in the clustering are topo-
logically identical as shown in the right figure of Fig. 6. However,
it causes a problem that the state paths which do not exist before
minimization are allowed.

5. EXPERIMENTS
5.1. Experimental conditions
Voice conversion experiments on the ATR Japanese database were
conducted. We selected two sets of source and target speakers
(“MTK→MHT,” “MHO→MYI”). Each speaker uttered 503 sen-
tences, and 450 sentences are used for training and remaining 53
sentences are used for evaluation. The speech data were down-
sampled from 20kHz to 16kHz, windowed at a 5-ms frame rate
using a 25-ms Blackman window. Feature vectors consist of spec-
tral and F0 feature vectors. Each spectral feature vector consists
of 24 mel-cepstral coefficients excepting the zeroth coefficient and
their delta coefficients. Each F0 feature vector consists of F0 and its
delta. The number of mixtures and states of HMM are varied among
32, 64, 128, 256 and 512.

In the experiment, the following four models were compared.
“GMM”: the conventional GMM-based method, “MSD-GMM”:
the proposed method based on MSD-GMM, “MSD-HMM1” and
“MSD-HMM2”: the proposed methods without and with minimiza-
tion, respectively.

5.2. Objective evaluation
The mel-cepstral distortion (Mel-CD) was used as the objective mea-
sure of the spectral conversion. Voiced/unvoiced errors and F0 dis-
tortion were also used as objective measures of F0 conversion accu-
racy.

Fig. 9 and Fig. 10 show the results of subjective evaluation for
“MTK→MHT” and “MHO→MYI,” respectively. The proposed
methods obtained a similar or slightly lower Mel-CD than the con-
ventional method. Although, these differences are not large in terms
of perception, it can be seen from the voiced/unvoiced errors that
the proposed methods are smaller than the conventional method.
This result shows the effectiveness of the voiced/unvoiced conver-
sion based on MSD models. The F0 distortion of “MTK→MHT”
indicates that the proposed methods based on MSD models achieve
higher performance than the conventional method. It is confirmed
that the nonlinear conversion can convert F0 accurately. In the result
of “MHO→MYI,” although the differences of F0 distortion between

Training

MSD-HMM

Context-dependent HMM State shared HMM

Combined HMM

Clustering
share share

Combining

Fig. 3. The training process of MSD-HMM

Model without clustering
among temporal states

Model with clustering
among temporal states

share share share share

Fig. 4. The clustering among temporal states

 

Model without context restriction Model with context restriction

a-i+u i-u+e

u-e+o

a-i+u i-u+e

u-e+o

Fig. 5. The context restriction

share

Model without minimization Model with minimization

Fig. 6. The model structure minimization

the conventional and proposed methods is small when the number of
states are small, improvements can be seen with increasing the num-
ber of states. However, comparing MSD-GMM and MSD-HMMs,
no significant difference is observed in the objective evaluations.

5.3. Subjective evaluation
A DMOS test was performed for evaluating the similarity between
the target and converted speech samples in speaker characteristics.
The opinion score was set to a 5-point scale. Fifteen sentences were
used for the evaluation set, and the number of listeners was 10. The
number of mixtures/states are 256.

Fig. 7 and Fig. 8 show the results of the DMOS tests. Compar-
ing the conventional method (“GMM”) and the proposed methods
(“MSD-GMM,” “MSD-HMM1” and “MSD-HMM2”), the proposed
methods are superior to the conventional method. This means that
the nonlinear F0 conversion and voiced/unvoiced conversion based
on MSD models are effective for improving the similarity in the con-
verted speech. However, comparing MSD-GMM and MSD-HMMs,
MSD-HMMs are not superior to “MSD-GMM” as the objective eval-
uations. This might be because only the use of left and right phones
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Fig. 9. Objective evaluation, “MTK→MHT” (left : Mel-CD, center : # of U/V errors, right : F0 distortion)
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as contexts (triphone) is insufficient for modeling long time correla-
tions of F0 sequences.

6. CONCLUSION
This paper has proposed a simultaneous modeling technique of spec-
trum and F0 for voice conversion. The proposed technique makes it
possible to convert F0 nonlinearly and to convert voiced segments
into unvoiced ones and vice versa. In the experiments, it is con-
firmed that the proposed method achieved a higher performance than
the conventional method.
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