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ABSTRACT

Despite the success of recent speech enhancement algorithms,
the enhanced signals still suffer from undesirable speech dis-
tortion caused by over-attenuation of weak speech spectral
components. In this paper, a post-processing technique based
on the regeneration of both voiced and unvoiced speech is pro-
posed to alleviate this problem. A non-linear transformation
is rst applied to a Wiener ltered speech and the transformed
signal is multiplied by a pre-estimated spectral envelop to
form the regenerated speech. The resulting speech is then
obtained using a weighted combination of the regenerated
speech components and the ltered speech. This process sig-
ni cantly improves the resulting speech quality as compared
to the original ltered version. It results in speech that sounds
less lowpassed. Also, the residual musical noise is signi -
cantly masked by the regenerated speech components. Ob-
jective measures show that the quality of the resulting speech
is much closer to the clean speech as compared to the original
Wiener ltered speech.

Index Terms— Speech enhancement, speech processing

1. INTRODUCTION

Single channel speech enhancement can be used either as a
stand-alone system or a pre-processor for some ensuing high
level tasks. It is an important research area that has been
widely studied for many years. The main challenge of sin-
gle channel speech enhancement arises from the insuf cient
information available to separate the underlying speech from
the uncorrelated noise. In the past, many algorithms have
been proposed to solve this problem, such as the spectral sub-
traction (SS) algorithm [1], the minimum-mean square error
(MMSE) Estimator [2] and Wiener lter based algorithms
[3, 4]. Many of these methods share a common principle,
that is, using a product of the noisy speech and a spectral
gain function g(ω) to recover the clean speech. The only dif-
ference among these algorithms is the use of different g(ω).
Therefore the difference between the estimated clean speech
and the original clean speech comprises two parts: speech

distortion [g(ω)− 1] S(ω), and noise distortion g(ω)N(ω),
where S(ω) and N(ω) are the spectra of the original clean
speech and noise respectively. References [5, 6] discuss the
tradeoff between speech distortion and noise reduction. The
common problem is that the higher the degree of noise sup-
pression, the higher is the amount of speech distortion. The
suppression of speech components is especially noticeable for
the unvoiced speech, where the weak speech components are
removed together with the noise components.

Recently, a few algorithms have been proposed to reduce
this phenomenon. Harmonic regeneration based approach
presented in [7, 8] tries to obtain a suppression gain that
varies according to the speech harmonics to achieve a good
tradeoff between speech distortion and noise reduction. How-
ever, this algorithm only attempts to reduce distortion in the
speech harmonics and it does nothing for the unvoiced speech.
In [9], a post-processing method is proposed to be used for
certain algorithms where only high frequency speech compo-
nents are regenerated. In order to obtain a fully regenerated
speech, we propose an algorithm to recover both the voiced
and unvoiced speech in the entire frequency domain. In our
technique, a smoothed envelop is rst estimated to produce
a continuous spectrum for regeneration. Then the excitation
signal is calculated based on the enhanced speech using a
non-linear transformation. Finally, the regenerated speech
components are added into the Wiener ltered speech to ob-
tain the improved speech. In this way, the over-attenuated
speech components are recovered ef ciently, and experi-
mental results show clearly the good performance of our
algorithm in achieving high quality speech enhancement.

2. WIENER FILTER

In the additive noise model, the noisy speech is the sum of the
clean speech plus noise signal, which is also applicable in the
frequency domain. If Y (m, ω), S(m, ω) and N(m, ω) rep-
resent the spectral magnitude of noisy speech, clean speech
and noise signal respectively, and, θY , θS and θN are their
respective phases, the noisy speech can be expressed in the
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time-frequency domain as

Y (m, ω)ejθY = S(m, ω)ejθS + N(m, ω)ejθN (1)

where m is the frame index and ω is the frequency bin index.
In order to suppress the background noise while main-

taining the speech content as much as possible, the traditional
noise reduction algorithms try to obtain an estimated speech
Ŝ(m, ω) with minimal speech distortion. Generally, the esti-
mated speech strongly relies on two important variables, the
a-posteriori signal-to-noise ratio (SNR) γ(m, ω) and the a-
priori SNR ξ(m, ω), which are de ned respectively as fol-
lows:

γ(m, ω) =
Y (m, ω)2

E [N(m, ω)2])
(2)

ξ(m, ω) =
E

[
S(m, ω)2

]

E [N(m, ω)2])
(3)

where E[.] is the expectation function. In our paper, the back-
ground noise is assumed to be a stationary uncorrelated ran-
dom process, and the expectation of the noise power is known.
Therefore the a-posteriori SNR can be easily obtained. On the
other hand, the a-priori SNR of each frequency bin can be cal-
culated by the decision-directed approach [2] which is de ned
as

ξ̂(m) = α
Ŝ(m− 1)2

E [N(m)2]
+ (1− α)max [γ(m)− 1, 0] (4)

where the frequency index ω is omitted for convenience and
the parameter α is normally set to 0.98 for a good tradeoff be-
tween noise reduction and speech distortion. With estimated
a-priori SNR ξ̂(m, ω), the Wiener gain utilized in this paper
can be expressed by Eq. (5).

g(m, ω) =
ξ̂(m, ω)

1 + ξ̂(m, ω)
(5)

Finally the enhanced speech Ŝ(m, ω) is obtained by

Ŝ(m, ω) = g(m, ω)Y (m, ω) (6)

3. PROPOSED POST-PROCESSING TECHNIQUE

As discussed previously, the Wiener ltered speech Ŝ(m, ω)
suffers from distortions since some weak components of
speech are considered as the background noise and are sup-
pressed together with the noise by common noise reduction
algorithms. In order to correct this problem, a post-processing
technique is proposed.

3.1. Envelop Estimation

The objective is to regenerate the over-attenuated voiced and
unvoiced speech components. Hence we choose the spec-
tral subtraction ltered speech instead of the Wiener ltered

speech Ŝ(m, ω) to do the envelop estimation since the spec-
tral subtraction causes lower distortion and it is without the
one-frame delay problem which has been indicated in [8].
The estimated envelop e(m, ω) of a certain frame mi can be
expressed as

e(mi, ω) =
√

max [Y (mi, ω)2 −N(mi, ω)2, 0]∗H(ω) (7)

where ∗ is the convolution operator and H(.) is a low-pass
FIR lter with a cutoff frequency of around 150 Hz. By con-
voluting with a low-pass lter, a smoother and more contin-
uous envelop is generated. Some weak speech components,
such as the ones over-attenuated by the spectral subtraction
algorithm can therefore be recovered by this step.

3.2. Excitation Generation

The non-linear transformation is a simple and ef cient way to
generate the excitation since it preserves the harmonic struc-
ture without any discontinuity in the spectrum [7]. The abso-
lute value or full-wave recti cation has been chosen instead
of half-wave recti cation as it generates a atter spectrum. If
the ŝ(t) denotes the ltered speech Ŝ(ω) in the time domain,
the excitation signal z(m, ω) can be obtained as follows:

z(m, ω) = STFT{abs[ŝ(t)] ∗W (t)} (8)

where STFT(.) and abs(.) are the short-time Fourier trans-
form and the absolute value function, respectively. The W (.)
is a whitening lter which is designed to atten the spectrum
of the full-wave recti ed signal. This is done by performing
a linear predictive coding (LPC) analysis and using the re-
sulting coef cients to whiten the excitation. The reason for
applying the whitening lter is to ensure that the regenerated
speech will conform to the computed envelop better.

3.3. Speech Synthesis

It is well-known that in Wiener ltering, the energy of the l-
tered speech is lower than the energy of the clean speech. This
can be partially reversed by synthesizing the nal enhanced
speech as a combination of ltered speech and a weighted
portion of the arti cially regenerated speech components.
This process is given in Eq. (9).

S̃(m, ω) = Ŝ(m, ω) + β · z(m, ω)e(m, ω) (9)

where the parameter β is empirically determined and equal
to 0.1 in this paper. Unlike the method in [9] which low-
passes the enhanced speech and just synthesizes the high fre-
quency components, Eq. (9) is computed over all the fre-
quency bands. It also preserves the contribution of the com-
mon noise reduction algorithms by including the enhanced
speech Ŝ(m, ω). The nal regenerated speech harmonics are
produced by the excitation signal z(m, ω) as well as the non-
linear transformation used in [7]. Furthermore, some weak
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Fig. 1. (a)waveform of clean speech and CD between clean
speech and (b) speech enhanced by HRNR (c) ours with white
noise at SNR=5dB

spectral components, especially the unvoiced speech, could
be recovered by the estimated envelop e(m, ω) which is ex-
tracted from the enhanced speech obtained using the spec-
tral subtraction algorithm. Therefore the synthesized speech
S̃(m, ω) is able to combine good noise reduction with lower
speech distortion both for voiced and unvoiced speech com-
ponents.

The synthesized speech S̃(m, ω) should undergo the in-
verse Fourier transform and the add & overlap process to pro-
duce the restored speech signal s̃(t) in the time domain.

4. EXPERIMENTAL RESULTS

In our experiments, the proposed post-processing technique
is evaluated by two objective measures, namely cepstral
distance (CD) and perceptual evaluation of speech quality
(PESQ). Ten utterances from the TIMIT database, spoken by
5 females and 5 males, are selected as the test data. Differ-
ent noise types from the NOISEX database, including white
noise, fan noise, car noise and f16 aircraft noise with various
input SNRs ranging from -10 dB to 10 dB, are added. We
compare our approach with the noisy speech (Noisy), the
Wiener ltered speech (Wiener) and the recently proposed
Harmonic Regeneration Noise Reduction (HRNR) approach
[8]. The objective measures show that our method is bet-
ter than the others, which is further con rmed by informal
subjective listening tests. The proposed algorithm results in
speech with more high frequency content and very little mu-
sical noise. This is because musical noise exists as isolated
spectral peaks and they are masked to some extent by the
regenerated speech components.

4.1. CD Measure

Cepstral distance can be used to measure the distance between
two spectral envelops and it has been used in objective tests in

Table 1. Mean Cepstral Distance Comparison

Noise SNR Mean Cepstral Distance
type (dB) Noisy Wiener HRNR Ours

-10 2.93 2.32 3.15 1.91
-5 2.73 1.99 2.52 1.55

White 0 2.43 1.70 1.78 1.28
5 2.06 1.36 1.29 1.03
10 1.66 0.97 0.94 0.78
-10 2.01 1.57 1.60 1.28
-5 1.58 1.06 1.16 0.89

Fan 0 1.20 0.68 0.85 0.58
5 0.88 0.42 0.62 0.36
10 0.63 0.26 0.45 0.23
-10 1.38 0.70 0.72 0.60
-5 1.05 0.50 0.53 0.45

Car 0 0.80 0.36 0.41 0.34
5 0.59 0.27 0.33 0.26
10 0.44 0.19 0.27 0.19
-10 2.32 1.90 2.73 1.49
-5 2.10 1.52 1.89 1.24

F16 aircraft 0 1.77 1.14 1.30 0.97
5 1.39 0.76 0.90 0.68
10 1.02 0.46 0.66 0.44

[7, 8]. Fig. 1 presents the waveform of clean speech together
with the CDs generated from HRNR and our approach. It
clearly shows that although HRNR has a good performance
for the voiced speech components, our post-processing tech-
nique regenerates the speech components for the entire speech
including the unvoiced periods and hence achieves a better
performance for high quality speech enhancement. The re-
sults also demonstrate the capability of our technique to re-
cover both voiced and unvoiced speech components. The
comparisons among Noisy, Wiener, HRNR and our technique
based on the mean values of CD are shown in Table 1. The
lower the value of CD, the better the performance of the corre-
sponding algorithm. From the table, it can be seen that our al-
gorithm achieves signi cant improvements especially for the
low input SNR range.

4.2. PESQ Measure

The PESQ measure which aims to predict the results of sub-
jective listening tests is described in ITU-T Recommendation
P.862, and has been proven to be more reliable and correlated
with Mean Opinion Score (MOS) than other traditional ob-
jective measures in most situations [10]. It yields an accurate
evaluation both on speech distortion and noise distortion. The
input SNRs of noisy speech and the corresponding PESQ re-
sults of Noisy, Wiener, HRNR and our technique are given in
Fig 2. It can be found that our method is especially good un-
der low input SNR conditions. These improvements become
more obvious when the noise is mainly distributed in the low
frequencies. Informal subjective results corroborated with the
PESQ results.
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5. CONCLUSION

Speech distortions caused by over-attenuation of speech com-
ponents occurs in most traditional speech noise reduction al-
gorithms since the weaker parts of speech are suppressed to-
gether with the noise. In this paper, a post-processing tech-
nique is proposed to alleviate this problem and it leads to high
quality speech signal as a result. This is achieved by regenera-
tion of both voiced and unvoiced speech components. The re-
sulting speech is compared with the noisy speech, the Wiener
ltered speech and HRNR ltered speech using two objective

measures (CD and PESQ) and informal subjective listening
tests. All the objective tests clearly show beyond doubt that
the proposed algorithm is better and the improvements are es-
pecially noticeable at low input SNRs. Informal subjective
listening tests indicate that the musical noise is suppressed
and the restored speech sounds richer as it has more high fre-
quency content.
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Fig. 2. Comparison of PESQ results
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