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ABSTRACT

Recently, we have presented a transfer-function generalized
sidelobe canceler (TF-GSC) beamformer in the short time Fourier
transform domain, which relies on a convolutive transfer function
approximation of relative transfer functions between distinct sen-
sors. In this paper, we combine a delay-and-sum beamformer with
the TF-GSC structure in order to suppress the speech signal re-
flections captured at the sensors in reverberant environments. We
demonstrate the performance of the proposed beamformer and com-
pare it with the TF-GSC. We show that the proposed algorithm
enables suppression of reverberations and further noise reduction
compared with the TF-GSC beamformer.

Index Terms— Adaptive signal processing, array signal pro-
cessing, acoustic noise, speech enhancement, speech dereverbera-
tion

1. INTRODUCTION

Multi-channel speech enhancement algorithms using microphone ar-
rays have been an active area of research for many years and are
known to have the potential of improving single sensor solutions. In
reverberant environments, the signal acquired by a microphone array
is distorted by the acoustic impulse response and usually corrupted
by noise. Beamforming techniques, which aim at recovering the de-
sired source signal from the reverberant and noisy measurements,
are the most common and studied solutions.

Linearly constrained minimum variance (LCMV) adaptive
beamforming, proposed by Frost [1], and in particular its gener-
alized sidelobe canceler (GSC) unconstrained version developed by
Griffiths and Jim [2] are the most commonly used beamforming
methods. These methods assume that the signals captured at the
sensors are delayed versions of the source signal. However in rever-
berant environments, the speech signal is propagated through room
impulse response. Gannot et al. [3] proposed the so-called trans-
fer function GSC (TF-GSC), which exploits the acoustic path by
incorporating the relative transfer function (RTF) to achieve noise
reduction. This approach is carried out in the short time Fourier
transform (STFT) domain and approximates the linear convolu-
tion as a multiplicative transfer function (MTF). Recently, we have
presented a GSC framework in the STFT domain using a com-
plete representation of a linear convolution [4], and proposed a new
practical algorithm relying on the convolutive transfer function ap-
proximation (CTF-GSC). Performance evaluation showed that the
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CTF-GSC is especially advantageous in reverberant environments
and achieves both improved noise reduction and reduced speech
distortion. In addition, it was shown that the improved performance
is obtained mainly due to the use of an improved RTF identification
method [5]. It is worthwhile noting that the main objective of both
the TF-GSC and the CTF-GSC is noise reduction, i.e. recovering
the reverberant speech component captured at one of the sensors.

In this paper, we incorporate a delay-and-sum beamformer into
the GSC structure under the CTF approximation presented in [4].
This beamformer is designed to steer the beam towards a single di-
rection of the desired source location, while minimizing the response
in the reflections and noise source directions. We show that in rever-
berant environments the proposed approach enables suppression of
the speech signal reflections along with improved noise reduction
compared with the TF-GSC performance. This paper is organized
as follows. In Section 2, we formulate the problem in the STFT do-
main. In Section 3, we present the proposed algorithm. Finally, in
Section 4, we show experimental results that demonstrate the advan-
tages of the proposed method.

2. PROBLEM FORMULATION

Consider an array of M microphones in a noisy and reverberant envi-
ronment, where a single speech source located inside the enclosure.
The output of the mth microphone is given by

ym (n) = am (n) ∗ s (n) + um (n) , m = 1, 2, ..., M

� dm (n) + um (n)
(1)

where ∗ denotes convolution, s(n) represents a (non-stationary)
speech source, am(n) represents the acoustic room impulse re-
sponse between the speech source and the mth microphone and
dm(n) and um(n) are the speech and noise components received at
the mth microphone. We assume that the noise signals um(n), m =
1, 2, ..., M are stationary and uncorrelated with the speech source.
Alternatively, the measurements can be represented with respect to
the speech component at the first microphone

ym (n) = hm (n) ∗ d1 (n) + um (n) , m = 1, 2, ..., M (2)

where hm(n) represents the relative impulse response between the
mth microphone and the first microphone with respect to the speech
source location, which satisfies am(n) = hm(n) ∗ a1(n).

The signals can be divided into overlapping time frames and ana-
lyzed using the short time Fourier transform. Let P denote the num-
ber of time frames of the source signal s(n), N denote the length
of each time frame, and L denote the framing step. According to
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Fig. 1. Proposed GSC structure.

[6], [7], [8] a filter convolution in the time domain is transformed
into a sum of N cross-band filter convolutions in the STFT domain.
Hence, we can represent (2) in the STFT domain

ym (p, k) = dm (p, k) + um (p, k) , m = 1, 2, ..., M

=
N−1∑
k′=0

hm (p, k′, k) ∗ d1 (p, k′) + um (p, k)
(3)

where p is the time frame index, k and k′ are the frequency sub-
band indices and hm (p, k′, k) is the cross-band filter between fre-
quency band k′ and k. Let dm(k), um(k) and ym(k) denote col-
umn stack vectors of length P comprised of the STFT samples at
sub-band k of the signals dm(n), um(n) and ym(n) respectively,
and let Hm(k′, k) denote the convolution matrix of the cross band
filter hm(p, k′, k) of size P × P . Then, (3) can be written in matrix
representation

ym (k) =

N−1∑
k′=0

Hm

(
k
′
, k

)
d1

(
k
′
)

+ um (k) . (4)

Now, by applying the convolutive transfer function (CTF) approxi-
mation [4] [5] we obtain

ym (k) = Hm (k, k)d1 (k) + um (k) (5)

where the convolution in the time domain is approximated as a con-
volution in each sub-band in the STFT domain.

3. PROPOSED METHOD

Based on the GSC structure in the STFT domain [4], we propose
a scheme which enables reflections suppression combined with im-
proved noise reduction. The proposed structure is similar to the GSC
scheme and is comprised of three building blocks formed in two par-
allel processing branches, as illustrated in Fig. 1. The first block is
a delay-and-sum beamformer aimed at enhancing the speech and re-
ducing the noise. The second block is a blocking matrix which is
designed to block the desired speech signal and produce noise-only
outputs. The third block is a noise canceler which is built adaptively
to cancel the residual noise at the fixed beamformer output given the
noise-only signals.

3.1. Fixed Beamformer

The first block is a fixed delay-and-sum beamformer. In order to sup-
port broadband signals and non-integers delays, the beamformer is
implemented as a filter-and-sum beamformer, i.e. applying a finite

impulse response (FIR) filter to each microphone output and then
summing the filtered signals [1]. The basic idea is to delay each mi-
crophone output by a proper amount of time so that the speech com-
ponents from the direct path of the desired source are synchronized
across all sensors. These delayed measurements are then weighted
and summed. Since they add up together coherently, the speech com-
ponents are reinforced. In contrast, the reflections and noise compo-
nents are suppressed as they are added together destructively.

Let ŝF BF (n) denote the output signal of the fixed beamformer
(FBF) output, and let ŝF BF (k) denote a column stack vector of
length P comprised of the STFT samples of ŝF BF (n). It is worth-
while noting that ŝF BF (n) still contains noise, originated from re-
flections arriving from the speech source direction.

3.2. Blocking Matrix

Let zm(n) denote the mth output signal of the blocking matrix,
where m = 2, . . . , M , defined as

zm(n) = ym(n) − hm(n) ∗ y1(n). (6)

Under the CTF model, (6) can be written in the STFT domain

zm(k) = ym(k) − Hm(k, k)y1(k) (7)

where zm(k) is defined similarly to ym(k). By substituting (5) into
(7), we have

zm(k) = um(k) − Hm(k, k)u1(k).

Thus, the M −1 output signals of the blocking matrix contain noise-
only components.

Implementing the blocking matrix requires estimates of the
RTFs under the CTF approximation Ĥm(k, k). Thus, we use an
RTF identification method adapted to speech signals, which assumes
knowledge of speech presence probabilities [5]. It is worthwhile not-
ing that traces of the speech signal may leak into the reference noise
signals due to imperfect estimation.

3.3. Noise Canceler

Let ŝNC(n) denote the output of the noise canceler, defined as

ŝNC(n) =
M∑

m=2

g
NC

m (n) ∗ zm(n) (8)

where gNC
m (n) is the noise canceler filter of the mth output signal

of the blocking matrix. Under the CTF approximation, the noise
canceler is reduced to a band-to-band filter at each sub-band. Thus,
similarly to (5) and (7), (8) can be written in the STFT domain as

ŝNC(k) =
M∑

m=2

G
NC

m (k)zm(k) (9)

where GNC
m (k) is a convolution matrix of the band-to-band filter

of gNC
m (n). In order to achieve maximal noise reduction we aim at

minimizing the energy of the output signal, i.e.

min
GNC

m
(k)

‖ŝF BF (k) − ŝNC (k)‖2
. (10)

Now, the noise canceler filters
{
GNC

m (k)
}

are built adaptively using
the LMS algorithm.

3886



1 2 3 4 5 6 7
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time [s]

Am
pl

itu
de

(a)

1 2 3 4 5 6 7
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time [s]

Am
pl

itu
de

(b)

1 2 3 4 5 6 7
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time [s]

Am
pl

itu
de

(c)

1 2 3 4 5 6 7
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time [s]

Am
pl

itu
de

(d)

1 2 3 4 5 6 7
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time [s]

Am
pl

itu
de

(e)

1 2 3 4 5 6 7
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time [s]

Am
pl

itu
de

(f)

Fig. 2. Signal waveforms. (a) Reverberant speech source received at the first microphone. (b) Noisy signal received at the first microphone,
SNR=5dB. (c) Enhanced signal obtained at the TF-GSC output. (d) Enhanced signal obtained at the proposed method output. (e) Reference
noise signal at the output of the TF-GSC blocking matrix. (f) Reference noise signal at the end of the proposed blocking matrix.

4. EXPERIMENTAL RESULTS

In this section we evaluate the performance of the proposed method.
In order to compete with a method that relies on similar assumptions,
we compare the proposed method with an improved version of the
TF-GSC technique. The original version of the TF-GSC, proposed
in [3], is based on the non-stationarity RTF identification method
[9], which assumes the presence of non-stationary source and sta-
tionary uncorrelated noise. We improve this algorithm by replacing
the RTF identification method with a method adapted to speech sig-
nals [10] which also takes advantage of silent periods. Thus, both the
improved version of the TF-GSC and the proposed method require
knowledge of speech presence probabilities, which can be obtained
using a voice activity detector (VAD).

In the following experiments we simulate the acoustic impulse
responses according to the image method [11]. The responses are
measured in a rectangular room, 4 m wide by 7 m long by 2.75 m
high. We locate a linear 5 microphone array at the center of the room,
at (2, 3.5, 1.375). The microphone array topology consists of 5 mi-
crophones in a horizontal straight line with (3, 5, 7, 9) cm spacings.
The primary microphone (designated here as the “first” microphone)
was set to be the microphone positioned at the middle of the array.
A speech source at (2, 5.5, 1.375) is 2 m distant from the primary
microphone1, and a noise source is placed at (1.5, 4, 1.375).

The signals are sampled at 8 kHz. The speech source signal is a
recorded speech from the TIMIT database [12] and the noise source
signal is a computer generated white zero mean Gaussian noise with
variance that varies to control the SNR level. The microphones mea-
surements are generated by convolving the source signals with cor-
responding simulated acoustic impulse responses. We use a short
period of noise-only signal at the beginning of each experiment for

1Creating a far-end field configuration.

estimating the noise signals PSDs and for adaptive adjustment of the
noise canceler. In practice, the noise PSDs can be evaluated online
using a voice activity detector (VAD). The STFT is implemented us-
ing Hamming windows of length N = 512 with 50% overlap.

In order to compare the performance of the competing algo-
rithms, we use the noise reduction (NR) measure, defined by

NR � 10 log10

∑
n∈Tn

y2
1(n)∑

n∈Tn

ŝ2(n)

where Tn denotes periods where the speech signal is absent.
In the first experiment, we compare the performances of the two

competing methods in a reverberant environment with reverberation
time set to 0.5s. Figure 2(a)-(f) shows the waveform of the speech
component received by the primary microphone, the noisy measure-
ment at the primary microphone with SNR level of 5 dB, the en-
hanced speech at the output of the TF-GSC and the proposed meth-
ods, and a reference noise signal obtained at the output of the block-
ing matrix in both methods. We observe that the noise level at the
output of the proposed method is lower than the noise level at the
output of the TF-GSC method. In addition, the reference noise sig-
nal at the output of the blocking matrix of the proposed method con-
tains less traces of the speech, which yields better noise cancelation
and less speech distortion at the beamformer output. Figure 3 shows
the noise reduction curves of the TF-GSC and the proposed method
in various input SNR conditions. The proposed method obtains sig-
nificantly better noise reduction than the TF-GSC in all tested SNR
levels, with constant difference.

In the second experiment, we demonstrate the reflections atten-
uation achieved by the proposed method. It is worthwhile noting
that the TF-GSC method aims at producing undistorted reverberant
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Fig. 4. Mean log spectral distance (LSD) curves for various rever-
beration times.

speech as captured at the primary microphone. For evaluation we
use the log spectral distance (LSD) measure defined as

LSD(p) �

[
1

N

N−1∑
k=0

|�(s(p, k)) − �(ŝ(p, k))|2
] 1

2

where

� (f(t)) = 10 log10 |f(t)| .

Figure 4 shows the mean LSD curves obtained in various reverber-
ation times with SNR level of 10 dB. We observe that the speech
component at the output of the upper branch of the proposed method
is less reverberant than the unprocessed speech signal captured at the
primary sensor. In addition, we obtain that the speech component at
the output of the upper branch of the TF-GSC is more reverberant
than the unprocessed signal, mainly due to imperfect RTF identifica-
tion.

5. CONCLUSION

We have presented an improved version of the generalized sidelobe
canceler (GSC) beamformer in the STFT domain under the convolu-
tive transfer function approximation. The proposed algorithm com-
bines a delay-and-sum beamformer with the GSC structure in order
to suppress the speech signal reflections captured at the sensors in
reverberant environments. We demonstrated the performance of the
proposed method and compared it with the TF-GSC method. It was
shown that the proposed method enables better noise reduction and
that the proposed beamformer output is less reverberant than the sig-
nals captured at the sensors. It is worthwhile noting that dereverbera-
tion solutions are widely spread. Thus, incorporating more advanced
dereverberation techniques into the GSC beamformer is a promising
lead which requires further research.
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