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ABSTRACT

Although noise PSD estimation is a crucial part of noise reduction
algorithms, most noise PSD estimators have problems in tracking
non-stationary noise sources. Recently, a noise PSD estimator based
on DFT-subspace decompositions was proposed, which improves es-
timation of the PSD of such noise sources. However, as this ap-
proach is based on eigenvalue decompositions per DFT bin, it might
be too computationally demanding for low-complexity applications
like hearing aids. In this paper we present a method with similar
noise tracking performance as the DFT-subspace approach, but with
low computational costs. This method is based on computation of
high resolution perodiograms, and can estimate the noise PSD when
both speech and noise are present in a frequency bin. When com-
bined with a complete noise reduction system, the proposed method
can lead to an improvement for non-stationary noise sources of more
than 1 dB segmental SNR and 0.3 on a PESQ scale, compared to
standard noise tracking methods such as minimum statistics and the
quantile based approach, while computational complexity is in the
same order of magnitude.

Index Terms— speech enhancement, noise reduction, noise
PSD tracking

1. INTRODUCTION

Typically, estimators that are used for noise reduction of speech sig-
nals are dependent on an estimate of the noise power spectral den-
sity (PSD), see e.g., [1][2, Chs. 3 and 4][3]. Since this quantity is
unknown in advance, it has to be estimated from the noisy speech
signal. Accurate estimation of this noise PSD is crucial, as an under-
estimate of the noise PSD leaves an unnecessary amount of residual
noise in the enhanced signal, while an over-estimate leads to speech
distortions and a potential loss of speech quality.

Many of the noise PSD estimation algorithms that have been
proposed over the last years are based on some form of minima
tracking of (smoothed) noisy speech periodograms in a certain time-
interval, e.g., minimum statistics (MS) [4]. The length of this time-
interval is a decisive factor for reliability of the estimated noise PSD.
If the interval is too short, speech will leak into the noise PSD es-
timate. However, increasing the time-interval will increase tracking
delay, especially, when the noise PSD is increasing in level.

A method that does not explicitly depend on minimum tracking
is quantile based (QB) noise PSD estimation [5]. This method esti-
mates the noise PSD by computing per DFT bin a temporal quantile
p of noisy periodograms in a time-interval. The speed at which this
method can estimate the noise PSD for non-stationary noise sources
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depends on the length of the time-interval. As such, QB noise PSD
estimation methods are subject to a similar tradeoff as MS. Since the
noise PSD estimate is based on a quantile across time and not on a
minimum, QB noise PSD estimation is expected to track decreasing
noise levels with larger delay than MS, while an increasing noise
level can potentially be tracked faster than MS.

Recently, in [6], a DFT-subspace based method for noise track-
ing was proposed which improves noise PSD estimation, especially
for non-stationary noise sources. Compared to other noise PSD
methods the DFT-subspace approach leads to a shorter delay in
tracking a time-varying noise PSD. This method exploits the tonal
structure in speech and is based on the construction of correlation
matrices in the DFT-domain for each time-frequency point. These
correlation matrices are decomposed using an eigenvalue decom-
position into a mutually orthogonal signal (+ noise) subspace and
noise-only subspace. The eigenvalues that describe the energy in the
noise-only subspace then allow for an update of the noise PSD, even
when speech is present.

Although the DFT-subspace approach improves noise PSD
tracking of non-stationary noise sources, the necessary eigenvalue
decompositions might be too complex for applications with very
low-complexity constraints like hearing aids.

In order to apply fast and reliable noise tracking in such low-
complexity constrained applications we present in this paper an al-
gorithm with similar performance as the DFT-subspace approach,
but with considerably reduced computational complexity. As the
method in [6], the proposed method also exploits the tonal structure
of speech. It is based on the computation of noisy periodograms with
a frequency resolution that is typically higher than the frequency
resolution used in the noise reduction algorithm itself. The high
resolution-periodogram is divided in sub-bands, each corresponding
to a frequency bin in the noise reduction algorithm. Analogous to the
method in [6], we divide the frequency bins within each sub-band to
contain noisy speech and noise-only. Assuming that the true noise
PSD is constant across the sub-band, the noise-only frequency bins
of the high resolution periodogram are used to compute a maximum
likelihood (ML) estimate of the noise PSD.

2. DFT-BASED SPEECH ESTIMATORS

Let y,, denote a sampled time-domain noisy speech signal consisting
of a speech signal z,, degraded by additive noise n,, i.e.,

For noise reduction y,, is divided in signal-frames of length L; by
applying a sliding window w1 (m) with m € {0,...L1 — 1}. For

notational convenience it is assumed that the window w1 is normal-
ized, i.e, 51" "w?(m) = Li. Let k and i be the frequency-bin

ICASSP 2009



index and time-frame index and let X > L be the DFT size. The
noisy DFT coefficients y(k, ) are then obtained using the DFT of
the windowed time-frames, that is

1 m=Lj;—1

where j = \/—1 is the imaginary unit. Similarly, let z(k,) and
n(k, i) be the clean speech and noise DFT coefficient at frequency
bin k and time-frame i. The DFT coefficients y(k, %), z(k,) and
n(k,1) are assumed to be realizations of the zero-mean complex-
valued random variables Y (k, ), X (k, ) and N (k, 1), respectively.
To estimate the clean speech DFT coefficient z(k, i) a gain function
G(k, 1) is typically applied to the noisy DFT coefficients, that is

Z(k,1) = G(k,i)y(k,1).

y(k,i) = Yn(iL1/24m)wi(m) exp [—271kmj /K],

Although there are many ways to determine this gain function, e.g.,
using Bayesian principles [7], all gain functions depend on the noise
PSD 0% (k,i) = E[|N(k,i)|?]. Since, this quantity is generally
unknown it must be estimated from the available data.

3. NOISE PSD ESTIMATION BASED ON HIGH
RESOLUTION PERIODOGRAMS

Besides the signal-frames defined in Section 2 to which the actual
noise reduction is applied we also define a second type of time frame
that we call super-frames. The super-frames are used to estimate
the noise PSD using high resolution DFTs (HR-DFTs) and have a
length of Lo samples with Lo > Li. Let Q > Lo be the order of
the HR-DFT and let w2 be a normalized window function such that
S E2- Lw3(m) = Lo. The HR-DFT coefficient of a super-frame at

frequency bin ¢ and time-frame ¢ is given by
m=L1—1

Z/HR(q,i):\/L—2 D yn (iL1/24m) wa(m) exp [~2mgmj/ Q)

m=L1—Lo

where the subscript H R indicates that this is a coefficient of the HR-
DFT of a super-frame. The HR-DFT coefficients yn r(q, i) are used
to form a high-resolution noisy periodogram |yrr(q,4)|*. Hence,
each frequency bin £ corresponds to a band of, say P, frequency bins
in the high-resolution periodogram estimate |y r|?. More specifi-
cally, the kth band of the high-resolution periodogram consists of
the frequency bins ¢ € {q1,...,¢2}, with P = ¢2 — ¢1 + 1 and

G =(k-1/22 and q=(k+1/2%,

where it is assumed that () and K are integer powers of 2. This
high frequency resolution makes it possible to estimate the noise
PSD at a frequency band k£ when speech is present in this frequency
band as long as the clean speech signal observed in this band can
be approximated using less than the P complex exponential basis
function that are necessary to represent this frequency band.

To compute an estimate &5 (k, i) based on the kth frequency
band of |y r|* we assume that the noise level is constant across this
frequency band. Further we assume that the noise DFT coefficients
N have a complex Gaussian distribution, which is validated by the
fact that the time-span of dependency is relative short for many noise
sources [2, Chs. 3 and 4]. Let M (k, ©) be the set of frequency bins in
the kth HR-DFT frequency band that do not contain speech energy.
The ML estimate of the noise PSD in frequency bin k is then given

by )
D = g 2

qeEM(k,i)

lyar(g, i), (1)

where | M (k, )| denotes the cardinality of M (k, 7). To decrease the
variance of 63 (k, 1), smoothing across time can be applied.

3.1. Determining M (k, 1)

Determination of M (k;, i) is based on a procedure which was pro-
posed in [6] to determine the dimension of a noise-only subspace.
The procedure is based on two assumptions. First it is assumed
that the squared-magnitude of the noise DFT coefficients, i.e.,
|Nwr(g,1)|?, is exponentially distributed, which follows automati-
cally from the assumption already made in Section 3 that the noise
DFT coefficients are Gaussian distributed. Secondly, we assume
that the noise PSD develops relatively slowly across time, which
allows us to use the noise PSD estimated in the previous frame, i.e.,
6% (k,i — 1), as a priori information when estimating the noise
PSD in the current frame. This assumption does not limit the per-
formance, since a change in noise PSD of 10 - 15 dB per second can
easily be tracked.

With these assumptions, we are now in position to determine
which of the frequency bins ¢ € {q1, ..., g2} in the kth HR-DFT fre-
quency band do not contain speech energy, by applying a Neyman-
Pearson hypothesis test [8] with the following hypotheses

Hy:  |ymr(q,i)|? consists of only noise
Hy: |ymr(q,i)|? consists of noise and speech.

(@)

It can be shown that under rather general conditions, an optimal de-
cision test compares |yrr(q,7)|? to a threshold Az, [8], i.e.

N2 Hy
lyrr(q,9)|” 2 Aen-
Ho
Using the aforementioned distributional assumption on | Nrrz(q, )|

we can express the threshold A\, as a function of the false-alarm
probability Pr, by Aen = —o%(k,i — 1)InPy, [8].

3.2. Bias Compensation

Due to spectral leakage from neighboring DFT coefficients that con-
tain speech energy, the estimate 6% (k, ) is generally biased high.
Therefore, we introduce a bias compensation-factor, much along the
same lines as in [4], dependent on the cardinality of the set M (k, 1),
i.e. B(|JM(k,1)|). Altogether, the noise PSD is estimated by

52k, ) = 1 . ara,d)l?, 3
B DM, 2

where |M(k,i)| € {1,..., P}. The exact values of B(|M(k,1)|)

are computed using an off-line training procedure, where we used

more than 12 minutes of speech sentences that were degraded by

white Gaussian noise with a known variance o (k, ). Let B(k, 1)

be defined as

= —|M(1k,¢)\ quM(k,z‘) lyrr(g,d)|?
B(k,i) = o2 (k. 1) ) )
N 9

and let 7 (] M]) be the set of time-frequency points in the training
data for which the number of noise-only bins in a frequency band is
estimated to be |[M|. B(]JM(k, 1)), is then computed by averaging

B(k, 1) over the set 7 (| M|) leading to

B(IM(k,i)]) = m 2

(k) €T (IM])

B(k,i), )

where |7 (|]M])] is the cardinality of the set 7 (| M|).
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Fig. 1. (a) Speech degraded by modulated white noise at 5 dB SNR.
(b)-(c) Comparison between true noise PSD and proposed and refer-
ence noise PSD estimators for DFT bin centered around 0.9 kHz.

4. EXPERIMENTAL RESULTS AND COMPLEXITY

To evaluate the performance of the proposed approach for noise PSD
estimation we compare its performance with three reference meth-
ods, namely, MS [4], QB noise PSD estimation with quantile param-
eter p = 0.5 and a buffer length of 20 frames [5], and noise PSD es-
timation based on the DFT-subspace approach [6]. The speech data
base that we used consists of more than 7 minutes of Danish speech
spoken by 9 female speakers and 8 male speakers, and does not con-
tain long portions of silence. The speech signals were degraded by
several noise sources at input SNRs of 0, 5, 10, and 15 dB. As noise
sources we use white noise, passing train noise, passing car noise,
and white noise that is modulated by the following function,

f(m) =14 0.5sin(27 M fmod/ fs), 6)

where m is the sample index, fs the sampling frequency, and f,0d
the modulation frequency, which increases linearly in 25 seconds
from 0 Hz to 0.5 Hz, i.e. a maximum change of the noise PSD of
approximately 10 dB per second. All signals are used at a sam-
pling frequency of 8 kHz and start with a noise-only period of 0.5
seconds. All algorithms use the first 0.1 seconds for initialization,
which is therefore excluded from all performance measurements.
The proposed method has signal-frames and super-frames of length
Ly = 256 and Lo = 640 samples, respectively. For a fair compar-
ison with the DFT-subspace approach [6], the length L2 is chosen
such that it equals the amount of data used in [6]. The signal-frames
have an overlap of 50 % and are windowed using a square-root-Hann
window. The super-frames are windowed using a Hann window. The
order of the DFT and the HR-DFT are K = 256 and (Q = 1024, re-
spectively. Obviously, the estimated values of B(| M (k, 7)|) depend
on frame-length L2 and HR-DFT order (). In our implementation,
the estimated values of B(|] M (k, i)|) are between 1 and 3.7. For the

hypothesis test in Eq. (2) we use Py, = 107°.

4.1. Performance Evaluation

Fig. 1 shows an example of noise PSD estimation at a frequency
bin centered around 900 Hz. The speech signal under consideration
originates from a female speaker and is degraded by the aforemen-
tioned modulated white noise at an overall SNR of 5 dB. Together
with the estimated noise PSDs we also show the ideal noise PSD
o (k, i) obtained by smoothing noise periodograms across time us-
ing an exponential window, i.e.

on(k,i) = 0.90% (k,i — 1) 4+ 0.1|n(k,4)|°. (7)
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For visibility the results are distributed over two subplots. Subplot
(b) shows the noise PSD estimated by the proposed method, MS and
the true noise PSD and subplot (c) shows the noise PSD estimated
by the DFT-subspace approach, QB noise PSD estimation and the
true noise PSD.

From Fig. 1 we see that for a low modulation frequency all four
noise PSD tracking methods are close to the true noise PSD. How-
ever, as the modulation frequency increases over time we see that
MS is not able to track the increasing noise PSD. The QB noise PSD
estimator is slightly better in following increasing noise levels, how-
ever, it has more problems in tracking the noise PSD for decreas-
ing noise levels. The DFT-subspace and the proposed noise PSD
tracking method keep track of the changing noise PSD and obtain
estimates that are fairly close to the true noise PSD.

For a further performance evaluation we measure both noise
tracking performance as well as the speech enhancement perfor-
mance. Noise tracking performance is measured using the symmet-
ric log-error distortion measure [6]

] KU
LogErr:m;Z

=11i=1

0% (k, 1)
63 (k,1)

where I denotes the total number of signal-frames and o3 (k, i) de-
notes the ideal noise PSD.

To measure speech enhancement performance we applied the
noise PSD estimators within a single-microphone DFT-based noise
reduction system. In this system the speech PSD is estimated us-
ing the decision-directed approach [1]. As speech estimator we use
a magnitude DFT MMSE estimator derived under the assumption
that speech DFT coefficients have a generalized-Gamma distribution
with parameters 7 = 1 and v = 0.6 [3]. The speech enhancement
performance of this system is evaluated using PESQ [9] and segmen-
tal SNR defined as [10]

1010g10{ H [dB], (8)

I-1 .
[lzn (D)1

o
NP =137 {10080 5 e

where x,, (i) and &, (i) denote time-frame ¢ of the clean speech sig-
nal ,, and the enhanced speech signal &, respectively, and 7 (z) =
min{max(z, —10), 35} constrains the estimated SNR per frame to
the range of -10 dB till 35 dB [10].

The results in terms of of the LogErr distortion measure, PESQ
and SNRgcg are given in Table 1. In terms of noise tracking per-
formance, i.e., LogErr, the performance of the proposed approach
is very close to the DFT-subspace approach and better than MS and
the QB approach. Although this holds for all noise sources used in
the experiments, it is especially noticeable for more non-stationary
noise sources. In terms of speech enhancement performance, i.e.,
SNRgegz and PESQ, the results are in line with the noise tracking
performance in terms of LogErr. Depending on noise type and SNR,
improvements of 1 to 2 dB in terms of SNR e and 0.3 to 0.4 in terms
of PESQ can be observed over MS and QB noise PSD estimation.

4.2. Computational Complexity

The computational complexity of the proposed method is mainly de-
termined by the HR-DFT of order (), which has a complexity in the
order of Qlog, @ ~ 1.0 - 10* operations per time-frame [11]. The
DFT-subspace approach requires the singular values of a matrix with
dimensions LxM at each frequency bin. With the settings in [6], i.e.,
L= M =7, the computational complexity to obtain the singular val-
ues is in the order of 2.67L> operations [12], leading to a computa-
tional complexity that is in the order of (K /2-+1)2.67L* ~ 1.2-10°



Table 1. Performance in terms of LogErr (dB), SNReg (dB) and PESQ.

input LogErr (dB) SNRge, (dB) PESQ
noise SNR || MS DFT- prop. | QB MS DFT- prop. | QB MS DFT- prop. | QB
source (dB) [4] | Sub.[6] | meth. [5] [4] | Sub.[6] | meth. | [5] [4] | Sub. [6] | meth. [5]
0 1.1 0.8 0.8 1.5 2.2 3.0 2.6 1.6 1.86 1.96 1.91 1.82
white 5 1.2 0.9 0.8 1.5 5.2 5.6 5.3 3.9 || 2.26 2.33 229 | 2.19
noise 10 1.3 1.0 0.9 1.6 8.0 8.3 8.1 5.9 || 2.57 2.61 2.60 | 2.51
15 1.4 1.2 1.1 2.0 10.8 11.1 11.0 | 7.8 || 2.86 2.86 2.86 | 2.77
0 3.7 2.0 2.0 2.9 0.8 1.5 1.4 0.8 1.87 1.96 1.97 | 1.89
passing 5 3.6 2.3 2.2 3.2 3.8 4.3 4.4 33 || 2.26 2.34 236 | 2.28
train 10 3.5 2.8 2.5 3.8 7.2 7.4 7.6 5.8 || 2.62 2.65 2.69 | 2.61
15 3.7 3.5 32 5.0 10.6 10.8 109 | 8.0 || 2.93 291 296 | 2.88
0 3.9 2.2 2.1 3.5 5.6 6.3 6.9 4.4 || 2.09 2.39 240 | 2.09
passing 5 3.9 2.5 2.5 4.1 8.8 94 9.9 6.5 || 2.40 2.67 270 | 2.41
cars 10 4.1 3.1 3.1 5.3 12.0 12.5 12.9 84 || 2.72 2.92 295 | 2.68
15 4.6 3.9 3.9 7.1 15.0 15.6 159 | 9.9 || 3.00 3.14 3.15 | 291
0 2.7 1.0 0.9 2.4 1.3 3.1 2.9 1.2 1.59 1.97 1.92 | 1.64
modulated 5 2.8 1.0 1.0 2.5 4.2 5.8 5.6 3.6 1.98 2.33 229 | 2.03
white 10 2.8 1.2 1.1 2.7 7.2 8.6 8.4 5.7 || 2.34 2.60 2.60 | 2.37
noise 15 2.8 1.4 1.4 3.0 10.3 11.4 11.3 7.7 || 2.68 2.86 2.86 | 2.67
Table 2. Normalized processing-time. [2] ;351;53; iolr\ﬁaksl;fl,nzgi Jz.oggl.en, editors, Speech Enhance
method DFT-sub. [6] | Prop. | MS [4] | QB [5]
Proc. time 135 1.0 24 03 [3] J. S. Erkelens, R. C. Hendriks, R. Heusdens, and J. Jensen,

operations per time-frame. Hence, the proposed approach reduces
complexity with approximately a factor 11.5.

In Table 2 the computational complexity is reflected in terms of
processing-time of Matlab implementations of the noise PSD track-
ing methods, normalized by the processing-time of the proposed ap-
proach. The proposed and MS approach have a processing-time that
is in the same order of magnitude, while the QB approach is a bit
faster. In comparison to the DFT-subspace approach, the proposed
approach has a processing-time which is a factor 13.5 smaller. This
reduction in terms of processing-time is in the same order of magni-
tude as the aforementioned reduction in terms of required operations
per time-frame. Notice, that the processing times as given in Table
2 should only be considered as a rough estimate since they will in
general depend on implementation details.

5. CONCLUDING REMARKS

In this paper we presented a method for fast noise PSD estimation
with low complexity. The method is based on computation of pe-
riodograms using a DFT with a higher order than the DFT usually
used in the noise reduction algorithm itself. Experiments show that
the presented method has similar noise tracking performance as the
recently proposed DFT-subspace approach. However, with a com-
putational complexity that is more than a factor 10 lower.

In comparison to other noise PSD estimators, like minimum
statistics and quantile based noise PSD estimation, the proposed ap-
proach improves noise PSD tracking performance and speech en-
hancement performance while computational complexity is in the
same order of magnitude.
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