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ABSTRACT

We are presenting a method for the enhancement of speech in speaker
dedicated speech communication systems. The proposed procedure
is fundamentally different from most state-of-the-art filtering ap-
proaches. Instead of filtering a distorted signal we are re-synthesizing
a new “clean” signal based on its likely characteristics. These char-
acteristics are estimated from the distorted signal. We present a suc-
cessful implementation of the proposed method for a communica-
tion system for which speaker enrollment and noise enrollment are
feasible. Forty minutes of clean speech training data is usually suffi-
cient for successful denoising. The proposed method compares very
favorably to other state-of-the-art systems in both objective and sub-
jective speech quality assessments.

Index Terms – Speech Enhancement, Hidden Markov Models, Har-
monic Tunnelling, Sinusoidal Speech Model, Speaker Dependent
Denoising.

1. INTRODUCTION

The distortion of speech signals with additive noise is one of the
most hampering factors in speech signal processing today. Human
listeners are usually able to (psycho-acoustically) reject high levels
of background noise. In contrast, mild levels of noise can interfere
significantly in automatic speech recognition and speech coding [1].

The various modern approaches to denoising of speech are mostly
waveform filtering based methods. Waveform filtering implies that
only limited assumptions are made about the specific nature of the
underlying signal (i.e. than that it is an acoustic waveform). The
most prominent examples of waveform processing are theWiener fil-
tering extensions proposed byMcAulay andMalpass in 1980 [1] and
Ephraim and Malah in 1984 [1]. Other examples include schemes
that employ wavelets [2] and modifications of the iterative Wiener
filter and the Kalman filter [3]. A powerful method in the presence
of speech babble noise is the multiband spectral subtraction method
proposed by Kamath and Loizou in 2002 [1].

More recently, model based denoising methods have been pro-
posed [4]. In model based denoising a deterministic or stochastic
parametric model for a speech signal (and its properties) is used in-
stead of a general waveform model. A popular choice for a speech
model in this context is the harmonic plus noise model (HNM) which
was studied by Zavarehei, Vaseghi, and Yan [5]. Accurate mod-
eling and estimation of speech and noise gains via hidden Markov
models was proposed by Zhao and Kleijn [6]. Codebooks of linear
predictive coefficients and their employment for speech denoising

within a maximum-likelihood framework was studied by Srinivasan,
Samuelsson, and Kleijn [7].

The model based speech denoising method proposed in this pa-
per is inspired by the increasing success of inventory based speech
synthesis systems [8]. We are assuming that speaker enrollment
and noise enrollment are feasible for the given denoising task. The
speaker enrollment procedure provides us with training data that can
be appropriately clustered and used as an inventory for a “clean”
speech signal model. The inventory is augmented with a statistical
analysis of the speech signal under clean and noisy conditions. The
details of the proposed method are summarized in section 2. Exper-
imental results and performance studies are provided in section 3.

Applications for the proposed method include vehicular speaker-
phone communication systems and jet pilot communication systems.

2. METHODS

A block diagram of the proposed method is shown in figure 1. The
enhancement procedure is divided into three main tasks: (A) a sys-
tem training task (dashed arrows in figure 1), (B) the signal prepro-
cessing task (dotted arrows), and (C) the signal denoising task (solid
arrows).

The system training task consists of the development of a speech
waveform inventory, two mel-frequency cepstral coefficient (MFCC)
codebooks (under clean and noisy conditions), and a hidden Markov
model (HMM) to model the codeword transition statistics under clean
and noisy conditions. The details of the system training task are sum-
marized in section 2.1.

The procedures of the signal preprocessing task are adjusted ac-
cording to the expected noise type. No preprocessing is necessary
in the case of white noise. Stationary colored noise requires pre-
processing with a prewhitening filter. Nonstationary noise is pre-
processed with a combination of an estimation of the power spec-
tral density of the noise (via harmonic tunnelling) and subsequent
Wiener filtering. The details of the signal preprocessing task are
summarized in section 2.2.

Lastly, the speech denoising task combines the results of the pre-
processing with the results of a state sequence computation from
the trained HMM (described in section 2.1). Suitable sections from
the speech inventory are chosen through an inventory unit selec-
tion scheme and are then concatenated to form the targeted denoised
speech signal.

Before we discuss the three main components of the proposed
method in detail it is beneficial to first introduce some notation. At
the denoising stage we assume that we observe a signal x[n] which
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Figure 1. A block diagram of the proposed denoising method.
Dashed lines indicate processing steps that are performed dur-
ing system training. Dotted lines indicate signal preprocessing
steps.

consists of speech s[n] that is uttered by the enrolled speaker and is
distorted by zero mean additive noise v[n], i.e. x[n] = s[n] + v[n].

At the training stage we use ŝ[n] to, similarly, denote the speaker
enrollment data. System training is done off-line from speaker-
specific pre-recorded clean training signals. For simplicity we as-
sume that all training records of speech are concatenated into one
long training sequence ŝ[n].

Throughout the paper we make use of speech units or frames.
We represent a unit as a vector ofN successive samples of a signal:

sn = [ s[n− L] s[n− L + 1] . . . s[n− L + N − 1] ]T. (1)

The amount of overlap between adjacent frames is controlled by a
step size L. If i denotes a unit (or frame) index then the associated
vector is written as siL. Symbols xn, vn, and ŝn are defined analo-
gously to equation (1).

We use S to denote our speech-waveform-unit inventory. Set S

consists of all clean training data frames ŝn (∀n, i.e. with a step size
of one) with the exception of data frames that are entirely silent1.

Denoising is performed (up to an appropriate scaling factor) by
finding a mapping xiL → ŝn(i) that associates a specific inventory
frame ŝn(i) to every observed noisy frame xiL. Note that this map-
ping is generally not fixed, but time-variant and context dependent.
The resulting denoised signal s̃[n] is obtained by “concatenating”
the found frames ŝn(i) via a sinusoidal model based resynthesis tech-
nique [9]. The details of the procedure are described in section 2.2.

2.1. System Training and State Sequence Estimations

The goal of the system training stage is to provide the denoising
procedure with an inventory of available speech units and a hidden
Markov model that describes transition statistics within the inven-
tory. During inventory design all inventory elements ŝn that belong
to a similar phonemic function2 are grouped into the same class. The
purpose of the grouping is to be able to study the statistical prop-
erties of the group as a whole and then apply a resulting statistical
description in the denoising process.

The details of the clustering methods that were used for the in-
ventory design have to be omitted here due to space limitations. A
comprehensive description can be found in a paper on our earlier

1We consider frames to be entirely silent if the total frame energy falls
below a certain minimal level.

2We are using the term phonemic function in reference to a general, func-
tion carrying unit of a language. The group may or may not match with an
actual phoneme defined for that language.

work [4]. The only difference between the clustering method de-
scribed in [4] and the one used in this work is that we enforced a strict
separation between clusters containing voiced sections and clusters
containing unvoiced sections. To maintain compatibility with the
notation introduced in [4] we will refer to the resulting cluster sets
of inventory vectors ŝn with Kk for k = 1, 2, . . . M .

With the help of the inventory and its statistical description it
becomes possible to define a sequence kopt(i) of “optimal” cluster
memberships for incoming testing frames xiL. The sequence states
that the “most likely” inventory element ŝn(i) to represent the de-
noised frame for xiL is found in set Kkopt(i). Again, the details of
how to find the sequences kopt(i) have to be omitted. A comprehen-
sive description is provided in [4].

2.2. Speech Denoising

The first step in implementing the actual denoising portion of the
proposed method is the computation of the “optimal” cluster mem-
bership sequence kopt(i) as discussed in the previous section. After
that, the two remaining tasks are: (1) the identification of the best
match for each xiL in Kkopt(i), i.e. the intra cluster frame match-
ing, and (2) the “concatenation” of the resulting inventory frames to
resynthesize the targeted denoised signal.

2.2.1. Intra Cluster Frame Matching

We begin by defining a similarity measure between a noisy frame
xiL and an inventory element ŝn. Deciding the best matched in-
ventory element ŝn for the clean frame siL in noisy speech xiL is
essentially a signal detection problem. With a maximum likelihood
criterion, if the additive noise viL is independent white Gaussian
noise then a correlation detector should be used [10]. Since the
power of the training frame and the testing frame may be signifi-
cantly different, a power normalization is applied. We use V 2 =
E{vT

nvn} to denote the variance of the noise, and the estimated
power

√
‖xiL‖2 − V 2 of the underlying clean speech s[n] is taken

into account. For the estimate of the power of s[n] we assume that
the noise v[n] is (approximately) orthogonal to s[n]. The similarity
measure in the white Gaussian noise case is defined as follows:

σ(xiL, ŝn) =
x

T
iL ŝn√

‖xiL‖2 − V 2 · ‖ŝn‖
. (2)

If viL is colored noise then a prewhitening filter is used before the
correlation detector. We assume that the linear prediction coeffi-
cients a1, a2, . . . , ap of the noise v[n] can be estimated via the
autocorrelation method. The impulse response of the prewhitening
filter hw is then given by hw = [ 1 a1 a2 . . . ap ] T . The similar-
ity measure becomes:

σ(xiL, ŝn) =
(xiL ∗ hw)T (̂sn ∗ hw)√

‖xiL ∗ hw‖2 − V 2
w · ‖ŝn ∗ hw‖

, (3)

where we use V 2
w = E{(vn∗hw)T(vn∗hw)} to denote the variance

of the prewhitened noise.
If v[n] is non-stationary noise then a noise reduction stage for

the voiced parts of the incoming speech signal is employed. We
use harmonic tunnelling [11] to track the noise spectrum. The har-
monic peaks of every incoming signal frame are detected using the
approach described in [11]. The estimated noise spectrum is ob-
tained in three steps. Firstly, we sample the spectrum in the tunnels
between the harmonic spectral peaks. Secondly, we impose a weight
function on the sampled spectrum to reduce the spectral smearing of
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Figure 2. An illustration of the weight function employed
in the harmonic tunelling approach.

harmonic peaks. The employed weight function is a sin3 function
as illustrated in figure 2. Finally the noise spectrum is smoothed
in both time and frequency. The resulting estimated non-stationary
noise spectrum was used in a Wiener filter to enhance the voiced
part of the incoming speech sections. We use x̃iL to denote the
resulting enhanced speech frames. The similarity measure is then
defined through equation (2) as σ(x̃iL, ŝn).

After the generation of an appropriate similarity measure be-
tween an incoming noisy frame xiL (or x̃iL) and an inventory ele-
ment sn we can define an optimal intra cluster match ŝ

(i,k) via
ŝ
(i,k) = arg max

ŝn∈Kk

σ(xiL, ŝn). (4)

Denoising is simply accomplished by replacing each frame xiL with
the power normalized inventory frame α · ŝ(i,kopt(i)):

xiL → α · ŝ(i,kopt(i)), (5)

where the normalization factor α =

√
‖xi‖2−V 2

‖ŝ(i,kopt(i))‖
.

2.2.2. Target Resynthesis

Lastly we concatenate the resulting inventory frames ŝ
(i,kopt(i)) to

resynthesize the targeted denoised signal via a sinusoidal model ex-
pansion [9]. Reconcatenation with the sinusoidal model helps to
minimize phase incompatibilities at the frame boundaries.

We extract the parameters of the peaks in the discrete Fourier
transform (DFT) of frame ŝ(i,kopt(i)) as amplitude Âi

l , phase θ̂i
l , and

frequency ω̂i
l , for l = 1, 2, . . . , Q(i). Q(i) denotes the number of

peaks below a threshold of 80. Âi
l , θ̂i

l , and ω̂i
l are referenced with

respect to the center of each synthesis frame. We use the frequency-
matching algorithm described in [9] to associate all of the parameters
measured for an arbitrary frame i with a corresponding set of match-
ing parameters for frame i + 1. If we use (Âi

l , θ̂i
l , ω̂i

l ) and (Âi+1
l ,

θ̂i+1
l , ω̂i+1

l ) to denote the parameters for the lth frequency track in
two consecutive frames, then we can interpolate the amplitude for
the samples between the centers of those two frames via:

Â
i
l(k) = Â

i
l +

Âi+1
l − Âi

l

L
· k for k = 0, 1, · · · , L− 1. (6)

As described in [9], a cubic polynomial function can be used to in-
terpolate the phase values θ̂i

l(k). After estimating and interpolating
the above parameters for every sample of the incoming frame we can
synthesize a signal s̃[m] over the respective overlapping region of L
samples with:

s̃[m] =

Q(i)∑

l=1

Â
i
l(m− iL) cos[θ̂i

l(m− iL)], (7)

for iL ≤ m ≤ (i + 1)L − 1. The resulting s̃[m] represents our
targeted denoised speech signal.

3. EXPERIMENTAL RESULTS

The performance of the proposed method was evaluated with exper-
iments over a subset of the CMU_ARCTIC database from the Lan-
guage Technologies Institute at Carnegie Mellon University3. The
CMU_ARCTIC database is specifically designed to be used with in-
ventory based speech synthesis systems. The two subsets of the cor-
pus employed in our study were the US English male speaker with
identifier BDL and the US English female speaker with identifier
SLT. The two subsets contain 1132 phonetically balanced English
utterances each. Most utterances are between one and four seconds
long. The data was appropriately low-pass filtered and subsampled
to a processing sampling rate of 8 kHz. Additive noise was taken
from the NOISEX database from the Institute for Perception-TNO,
The Netherlands Speech Research Unit, RSRE, UK4. For our exper-
iments we used white noise, buccaneer jet cockpit noise which is
considered as colored noise, and speech babble noise which is con-
sidered as non-stationary noise at a signal to noise ratio of 10 dB.

From the two data sets we randomly chose 10 utterances each
for testing and left the remaining 1122 utterances each for training.
The training and testing sets were, thus, mutually disjoint. For the
signal segmentation and inventory generation described in section 2
we used a frame length N of 160 samples (equivalent to 20 msec
frames) and a step size L of 80 samples (equivalent to a 50% frame
overlap). The size M of the employed inventory was 50 clusters.
We used 40 clusters to model voiced frames and 10 clusters to model
unvoiced frames.

An objective quality assessment was performed with the Per-
ceptual Evaluation of Speech Quality (PESQ), the Log Likelihood
Ratio (LLR), the Itakura-Saito Distortion (IS), and a Cepstral Dis-
tance Measure (CEPD). The PESQ measure, an ITU recommenda-
tion correlates very well with subjective quality of speech. Note that
the LLR, the IS, and the CEPD are distortion measures (i.e. smaller
values are better) whereas the PESQ is a quality measure (i.e. a big-
ger value is better). All measures are comprehensively described in
the text by Loizou [12]. The quality/distortion measures evaluate the
quality of the noisy or enhanced speech signal, using the original
clean speech signal as the reference signal.

For benchmark purposes we computed results not only for the
proposed method (PM) but also for four other standard and state-of-
the-art methods. These methods are abbreviated with the two letter
codes WF, MB, EM, and CB in tables I – III. Abbreviation WF
denotes the iterative Wiener filtering scheme described in [1] (with 2
iterations). The codeMB denotes themultiband spectral subtraction
method proposed by Kamath and Loizou in 2002 [1]. EM represents
theminimum mean-square error log-spectral amplitude estimator by
Ephraim and Malah [13]. CB stands for a state-of-the-art codebook-
driven Wiener filtering scheme similar to the one described in [7].
Note that the CB approach also required substantial training with
speech and noise5.

The experimental results are listed in tables I to III. The distor-
tion/quality measures of the two best performing algorithms in each
category are shown in a boldface font. It is readily visible that for the
white noise and the jet cockpit noise our proposed method (PM) out-
performs all other methods in all considered quality/distortion mea-
sures, especially in the PESQ measure (which is most significant in
assessing perceptual quality).

3The corpus is available at <http://www.festvox.org/cmu arctic>.
4The noise is available at <http://spib.rice.edu/spib/select noise.html>.
5We used the same codebook clustering method for the proposed method

and theCBmethod to make the comparison fair between the two approaches.
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Table I
Average Objective Quality Measures for Conventional Enhance-
ment Methods and the Proposed Method under Additive White
Noise at 10dB SNR.

Quality Noisy PM WF MB EM CB
Measures

B PESQ 1.76 2.70 2.53 2.23 2.51 2.53
D LLR 1.02 0.61 1.02 0.88 0.64 1.03
L IS 1.50 1.24 2.99 2.24 1.93 1.78

CEPD 5.55 4.21 5.81 5.09 4.31 5.68
S PESQ 1.69 2.75 2.32 2.24 2.54 2.36
L LLR 1.29 0.47 0.80 0.78 0.65 0.84
T IS 2.02 1.24 3.98 1.44 1.65 1.33

CEPD 6.74 4.09 5.30 4.94 4.58 5.06

Table II
Average Objective Quality Measures for Conventional Enhance-
ment Methods and the Proposed Method under Additive Jet Cock-
pit Noise at 10dB SNR.

Quality Noisy PM WF MB EM CB
Measures

B PESQ 2.01 2.73 2.47 2.44 2.58 2.62
D LLR 0.74 0.51 0.90 0.72 0.54 0.90
L IS 1.14 0.84 7.58 2.10 1.74 1.72

CEPD 4.63 3.84 5.13 4.50 3.96 4.84
S PESQ 1.88 2.75 2.15 2.37 2.62 2.36
L LLR 0.97 0.58 0.83 0.73 0.62 0.86
T IS 1.59 0.96 10.68 1.50 1.86 1.87

CEPD 5.95 4.04 5.45 4.80 4.66 4.77

Table III
Average Objective Quality Measures for Conventional Enhance-
ment Methods and the Proposed Method under Additive Babble
Noise at 10dB SNR.

Quality Noisy PM WF MB EM CB
Measures

B PESQ 2.32 2.60 2.15 2.66 2.51 2.40
D LLR 0.74 0.61 0.83 0.35 0.38 0.65
L IS 1.14 1.46 10.78 0.60 0.65 7.50

CEPD 4.63 4.21 2.45 2.87 2.98 2.52
S PESQ 2.14 2.64 2.24 2.49 2.46 2.35
L LLR 0.49 0.51 0.52 0.48 0.47 0.48
T IS 0.74 1.64 3.50 1.09 1.00 1.39

CEPD 3.80 4.32 3.90 3.71 3.72 3.85

The proposed method still achieves top performances in PESQ
measure for non-stationary speech babble noise. Only in the male
speaker case (BDL) was the proposed method slightly inferior in
PESQ to the multiband spectral estimation method (MB). The per-
formance of the proposed method was somewhat less successful
in terms of the other distortion measures, especially in comparison
to its main competitor the MB case. Informal listening tests with
a small group of subjects, however, revealed that the true percep-
tual quality of the proposed method was at least comparable (if not
slightly superior) to the MB method in this case.

The improvements of the proposed method come at the cost of
an increased complexity. The complexity of the proposed method
is dominated by the intra-cluster search and grows at an order of

K log K with K being the sample-number per cluster (in average
K = 384000 in our experiments).

4. CONCLUSIONS

We presented a new method for the denoising of speech. Our ap-
proach is based on an inventory style speech re-synthesis scheme that
utilizes a statistical analysis of the underlying parameter space. The
required statistical descriptions were obtained from noise enrollment
and from speaker enrollment in clean conditions. With experiments
we have shown that the proposed method performs very well in com-
parison to commonly used waveform based denoising methods.
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