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ABSTRACT 
 
In speech enhancement applications, a validated metric of 
noise reduction performance is vital in the relative ranking 
of noise reduction algorithms and in enhancing the 
performance of a noise reduction algorithm.  Subjective 
scores of enhanced speech remain the yardstick for 
performance, but objective metrics that emulate subjective 
evaluations are preferred for cost- and time-effectiveness. In 
this paper, we analyze the performance of two objective 
methods for predicting the quality of enhanced speech.  The 
first method employs the coherence-based speech 
intelligibility index, while the second method uses features 
derived from the Moore - Glasberg auditory model.  In both 
cases, the features are mapped to a quality score using the 
Bayesian modeling approach.  Results show that the 
combination of the auditory model-based feature set and the 
Bayesian modeling provides the best performance in 
predicting the quality scores of enhanced speech. 
 

Index Terms— Speech enhancement, noise reduction, 
objective speech quality estimation, Bayesian model. 

 
1. INTRODUCTION 

 
Enhancement of noisy speech has applications in mobile 
communications, hands-free devices, and hearing aids.  
Several speech enhancement strategies have been proposed 
[1], and this topic continues to attract significant research 
attention. Benchmarking the performance of speech 
enhancement algorithms is an important sub-topic within 
this area. 

Evaluation of the performance of speech enhancement 
algorithms can be done through objective or subjective 
means.  Subjective methods include the collection of ratings 
of speech quality or speech intelligibility using a group of 
listeners.  While subjective measurements are preferred for 
their face-validity, they are often cumbersome to administer 
and are resource-intensive.  Objective measures which 
analyze the noisy and enhanced speech signals, and derive a 
metric of noise reduction performance are therefore 
attractive.  It is desired that the objective metric correlates 
highly with subjective scores, i.e. the objective method 
emulates the perceptual rating process and reports a value 
that is perceptually relevant. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 1. Block diagram of objective speech quality evaluation 
procedure for the assessment of noise reduction. 

Figure 1 displays the block diagram of a typical 
objective evaluation of speech quality.  The measurement 
process involves the computation of a set of features from 
the clean and enhanced speech samples, and mapping the 
“distance” between these features to a predicted speech 
quality score. 

A number of feature extraction methods and feature 
mapping techniques have been investigated for speech 
quality evaluation.  Hu and Loizou  [2] recently reported the 
performance of a set of metrics using a database of noisy 
speech enhanced by a variety of noise reduction algorithms.  
The top three metrics that correlated highly with subjective 
ratings of the quality of the enhanced speech were: (a) the 
PESQ measure standardized by the International 
Telecommunication Union (ITU) [3], (b) the log likelihood 
ratio (LLR) measure, and (c) the frequency-weighted 
segmental SNR measure.   In addition, combining a number 
of these metrics using multivariate adaptive regression 
splines resulted in the highest correlation coefficient of 0.73 
with the subjective ratings of all speech samples in the 
database.  Rohdenburg et al. [4] also conducted a similar 
investigation with a different database and concluded that 
auditory model-based measures predict subjective quality 
scores better than “technical measures” such as coherence. 

In this paper, we investigate the performance of two 
additional objective quality metrics viz. the coherence-based 
speech intelligibility index (SII) [5] which incorporates a 
perceptual model, and the loudness pattern distortion (LPD) 
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measure [6] based on the Moore-Glasberg auditory model 
[7].  It is important to note that both these metrics have the 
capability to account for hearing loss, and as such are 
appealing for perceptual studies of noise reduction with both 
normal and hearing impaired listeners.  In addition, we 
apply the Bayesian modeling technique [6,8] as an 
alternative approach for mapping the feature vectors to the 
quality scores.   Bayesian modeling is a powerful approach 
to statistical characterization of the relationship between the 
features and the associated speech quality scores, and has 
not been adequately addressed in the literature within the 
realm of objective speech quality measurement. 
 

2. COHERENCE-BASED SII (CSII) 
 
The CSII [4] is an extension of the SII measure standardized 
by ANSI [9] for the prediction of speech intelligibility.  The 
first step in computing the standard SII is to determine the 
SNR in various frequency bands while accounting for the 
auditory threshold levels, masking effects, and the relative 
importance of different spectral regions to speech 
intelligibility [9]. The exact relationship is given by, 
 

(1) 
 

where k is the frequency index, j is the band index, )(ˆ kS and

)(ˆ kN are the speech and noise spectral components in the 

enhanced signal, and Wj(k) is the ro-ex auditory filter for the 
jth critical band [4].  The speech and noise spectral 
components can be estimated through the magnitude 
squared coherence (MSC) function [4], resulting in the 
Signal-to-Distortion Ratio (SDR) parameter, given by 
 

(2) 
 
 

where 
2

)(kγ  is the MSC parameter, and Pyy(k) is the power 

spectral density of the enhanced signal.  The overall 
intelligibility score is computed by summing the band-
specific SDR values.   

Although the CSII is conceptually devised for 
predicting the speech intelligibility, Arehart et al. [10] have 
demonstrated its suitability for predicting the quality ratings 
of speech samples corrupted by additive noise and clipping 
distortion.  Arehart et al. [10] proposed a three-level CSII, 
where the signal was divided into low, medium, and high 
energy levels, and the CSII values computed from these 
regions was combined using a linear regression function.   
Using this approach, a high degree of correlation ( > 0.9) 
was obtained with subjective preference scores by both 
normal hearing and hearing impaired listeners [10].  The 
performance of the CSII-based approach, however, has not 
been studied for benchmarking noise reduction algorithms, 
and thus warrants further investigation.    

3. LOUDNESS PATTERN DISTORTION (LPD) 
 
The LPD metric is derived using the Moore – Glasberg 
auditory model [7]. Here, both the original speech x and 
enhanced speech y are separately analyzed by identical 
operations, leading to what we shall refer to as the loudness 
patterns, Lx and Ly respectively.  The loudness patterns are 
computed by first segmenting the speech signal into frames, 
and transforming the frames into the frequency domain.  
Using the power spectral density, the excitation pattern is 
computed as 
 

(3) 
 
where ),( fiPw  is the power spectral density of ith frame, 

),,( wc Pffϕ  is the ro-ex auditory filter with the centre 

frequency fc. Subsequently, the excitation patterns are 
transformed into the loudness patterns denoted by  
[7]. Finally, the loudness pattern distortion is computed as: 
 
 

(4) 
 
 
where I is the total number of speech frames.  

Using a database of speech coder quality ratings, we 
have previously shown that the LPD measure correlates 
highly with subjective quality scores [6].  In this paper, we 
investigate its performance in predicting the quality ratings 
of enhanced speech.   
 

4. BAYESIAN MODELING  
 
An important component of objective speech quality 
evaluation is the so-called “cognitive model” which 
determines the relationship between the speech quality 
scores ],,,,[ 21 nuuuU =  and corresponding features,  

],,,,[ 21 nfffF =  i.e. iii fQu ε+= )( , where  are zero-

mean normally distributed random variables. The main 
difficulty in determining the regression function Q is the 
control of the complexity of the cognitive model, as a model 
with low complexity will not accurately capture the 
underlying relationship and a model with a high complexity 
will result in over-fitting.  In this paper, we handle this issue 
using the Bayesian modeling approach.  

In the Bayesian approach, the goal is to calculate the 
conditional probability distribution of the unobserved 
variables of interest, given the observed data. In other 
words, the goal is to compute the posterior predictive 
distribution of new quality score un+1 for the new input 
feature set fn+1 given the training data set D = {(ui,fi)}, 
i=1,2,…,n., i.e. , 

(5) 
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where W denotes all the model parameters and hyper-
parameters of the prior structures, and  represents 
the posterior probability of the parameters of the model Q 
given the training data set D.  The speech quality score is 
then estimated as 
 

(6) 
  

We assume that Q can be expressed as a linear 
combination of radial basis functions (RBFs), as shown  by 

 
(7) 

 
where )( fB j are the RBFs, which take one of the following 

forms: (i) linear, ; (ii) cubic, ; or (iii) thin 
plate spline, , where z= iif μ− ,  is the 

knot or position of a RBF and  denotes Euclidean 
distance. The Bayesian approach for determining the model 
parameters consists of three basic steps [8,11,12].  In step 1,  
priors are assigned to all the unknown parameters. 
Assuming that we have fully specified the set of basis 
functions, ],,,,[ 21 kBBBB =  then the model parameter 

set W includes the coefficients, ],,,,[ 21 kββββ =  and the 

regression variance . Modeling the joint prior for β and σ2 
using the normal inverse-gamma (NIG) distribution, we 
have, 
 

(8) 

where ,  is the identity matrix of suitable dimension, 
and a, b and  are the hyper-parameters.  In the second step,  
the likelihood of the data given the parameters viz., 

D/ , can be written as, 
 

(9) 

 
where D = {(ui,fi)} is the set of n quality scores and the 
associated features.  In the third step, the posterior 
distribution of the parameters given the data is obtained 
using Bayes theorem and updated values of the parameters.  
 
 
 

(10) 
 
 
 
Using Eq. (8), (9) and (10) the marginal likelihood of a 
model M can also be obtained by : 
 

(11) 

In addition, there are always a number of competing models 
to describe the relationship between the quality scores and 
the observation features. The Bayes factor is defined for the 
comparison of two competing models. The relative merits of 

over  is given by, 
 

(12) 
 
 

From an implementation point of view, the integral in 
Eq. 6 cannot be calculated using analytical methods. Instead 
it has to be approximated by drawing samples from the joint 
probability distribution of all the model parameters, 

. In order to achieve this, a reversible jump MCMC 
sampling strategy [12] was used, which can estimate the 
integral in Eq. 6 when the number of basis functions of each 
model in unknown. The reversible jump MCMC method is a 
generalization of the Metropolis-Hastings algorithm [12] 
with a number of other possible move types surrounding a 
change in the dimension of the density function. In each 
iteration, in addition to the possibility of attempting a move 
within a particular parameter subspace, the sampler can 
propose to “jump” dimension, up or down, by adding or 
removing a basis function from the cognitive model. This 
facilitates the determination of the correct model order for 
feature mapping while guarding against the feasibility of 
over-fitting.  For more details on the algorithm, the reader is 
referred to [12]. 
 

5.  METHOD & RESULTS 
 

The noisy speech corpus, NOIZEUS [1,2] was employed for 
evaluating the two objective metrics. The database  includes 
1792 processed speech samples with two SNR levels (5 and 
10 dB), four different types of background noise, and 
speech/noise distortions introduced by 13 different speech 
enhancement algorithms. Subjective ratings of the overall 
quality have been used to evaluate the two methods. 

The coherence-based SII was calculated following the 
procedure described in [4].   The analysis was performed on 
16 ms blocks with each block classified as “high”, “mid”, 
and “low” levels.  The CSII computed in each of these 
regions was combined using a linear regression function [4].  
In addition, the CSIILow, CSIImid, and CSIIhigh values were 
given to the Bayesian modeling algorithm for deriving the 
map between the features and the quality scores. The LPD 
metric was also computed on 16 ms blocks.  The LPD-B 
metric was computed using the Bayesian modeling where 
the loudness patterns were mapped to the quality score.  For 
the Bayesian modeling, 50% of the 1792 speech samples in 
the database were used for training and the remaining 50% 
for testing. 

The metrics were evaluated using the correlation 
coefficient and the standard error of estimation as described 
in [2].  Table 1 displays these values for the objective 
measures evaluated in this study, together with the salient 

+= =
k
j iijji fBu 1 )( εβ

**5.0*5.0

*5.0*5.0

)(

)(
),(

*

a
iji

a
jij

ji
bVV

bVV
MMBF =

= +++ dWDWpWfQDfuE nnn )/(),(),/( 111

3875



metrics from Hu and Loizou’s study [2].  Note that the 
correlation coefficients were computed across all 1729 
ratings, and hence are more stringent measures of 
performance.   It can be seen that the CSII metric correlated 
modestly with the subjective scores. The correlation 
improved further through the use of Bayesian modeling.  
The LPD metric also resulted in a modest correlation of 0.59 
with the speech samples in the test data set.  With the 
addition of the Bayesian modeling, this correlation 
improved to 0.72.  This value is similar to the C_MARS 
metric reported by Hu and Loizou [2], where several metrics 
(PESQ, LLR, and Weighted Spectral Slope etc) were 
combined using regression splines.  Thus with the present 
method, only one set of features need to be calculated and 
these features are mapped effectively to a quality score 
through the Bayesian model. 

Table 1.  Correlation coefficient and standard error of 
estimation for various objective quality metrics. 

Objective measure ρ eσ̂  

CSII 0.50 0.53 

CSII – B (Linear) 0.57 0.52 

LPD 0.59 0.55 

LPD – B (Linear) (testing) 0.72 0.44 

LPD – B (Cubic) (testing) 0.71 0.44 

LPD – B (Thin-plate) (testing) 0.71 0.44 

Modified PESQ (training) [2] 0.66 0.43 

Modified PESQ (testing) [2] 0.67 0.48 

Composite measures C_MARS  
(training) [2] 

0.73 0.39 

Composite measures C_MARS  
(testing) [2] 

0.73 0.44 

 
Figure 2 depicts the scatter plot of the predicted values of 
the overall quality scores versus the actual scores.  Here, 
both the objective and subjective scores were averaged 
across similar conditions in the entire database resulting in 
112 data points. The condition-averaged correlation between 
the LPD-B metric and the subjective scores was 0.86, 
highlighting the performance of this metric. 
 

6. CONCLUSIONS 
 
In this paper, we investigated the effectiveness of two 
metrics in predicting the quality ratings of enhanced speech.  
We have applied the Bayesian modeling paradigm as an 
alternative technique for mapping the features vectors into 
predicted quality scores.  Experiments with a database of 
enhanced speech samples and their quality ratings revealed 
that: (a) coherence based SII metric is perhaps not suitable 
for the prediction of the quality ratings of enhanced speech; 
(b)  the LPD metric based on the Moore – Glasberg auditory 
model resulted in a correlation coefficient of 0.59 across the  

Fig 2. Scatter plot of the condition-averaged predicted and 
actual overall quality scores. 

 
entire database; and (c) the application of the Bayesian 
modeling increased the correlation coefficient to 0.72.  In 
addition, the condition-averaged correlation coefficient was 
0.86, indicating a very good performance by the proposed 
metric. 
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