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ABSTRACT
In this work we show how conditional mean imputation can be
bounded through the use of box-truncated Gaussian distributions.
That is of interest when signals or features are partly occluded by a
superimposed interference, as then the noisy observation poses an
upper bound. Unfortunately, the occurring integrals are not analytic.
Hence an approximate solution has to be used. In the experimental
section we apply the bounded approach to the reconstruction of
partly occluded speech spectra and demonstrate its superiority over
the unbounded case with respect to automatic speech recognition
performance.

Index Terms— Signal reconstruction, Gaussian distributions,
Mean square error methods, speech enhancement, speech recogni-
tion

1. INTRODUCTION

This paper concerns incomplete or missing data problems, i.e. situ-
ations in which some part of the data is available while some other
part is missing. That can arise in different settings: surveys with in-
completely answered questionnaires, transmissions over lossy chan-
nels, occlusion of objects in images or – the case that we give es-
pecial attention to – occlusion of signals by noise. By occlusion we
mean that a part of the signal is dominated by noise so that the ob-
served power stemming from the interference dominates the power
of the occluded part of the signal. Consequently, the observation
constitutes an upper bound for the occluded part. We can also posit
a lower bound as the range of values that the signal assumes might
be bounded below.

Occlusion and its treatment have been studied extensively in
the field of automatic speech recognition, at sites such as Sheffield
[1, 2, 3], Carnegie Mellon University [4] and IDIAP [5]. Early ap-
proaches [1, 2] considered the occluded portion missing, but did not
consider its boundedness. In [3] the upper bound was eventually
discovered and exploited to bound the marginalization technique de-
vised in [1] for classification with missing data. Raj introduced this
into the field of missing data “imputation” by deriving a bounded
maximum a-posteriori (MAP) estimator [4]. As an analytical solu-
tion was not available, a computationally expensive, iterative scheme
had to be used. In more recent work, Raj derived a bounded min-
imum mean squared error estimator [6], where the distribution of
speech spectra was modeled as a diagonal covariance Gaussian mix-
ture. As a consequence, each occluded component could be treated
independently, as a doubly-truncated Gaussian distribution, as ex-
plained in [7]. Here, we extend that approach to the general case of
full covariance Gaussians.

The paper is organized as follows: in section 2 we derive a gen-
eral minimum mean squared error estimator for the missing data

problem and show how mean imputation and conditional mean im-
putation fit into that framework. In section 3 we introduce the box-
truncated Gaussian distribution along with approximations of its nor-
malizing constant and mean, which are used in section 4 to bound
the conditional mean imputation estimate. Experimental results are
shown in section 5.

2. MISSING DATA IMPUTATION

The objective of missing data imputation is to estimate the miss-
ing part of the data given the observed part, exploiting the statistical
relationship between the two. In the following, we first show the ex-
istence of an optimal estimator for this problem in section 2.1. Then
we go on with relating it to standard mean imputation techniques,
namely conditional mean imputation and mean imputation, in sec-
tions 2.2 and 2.3. Thereby, we give concrete formulas for the case
where the data follows a Gaussian distribution. That is extended to
Gaussian mixtures in section 2.4.

Throughout this paper the vector of missing data is denoted by
xm, the vector of observed data by xo. The vector of complete data,
x, is partitioned as x = [xT

m xT
o ]T by reordering the coefficients.

2.1. The General Minimum Mean Squared Error Solution

Let x̂m = δ(xo) be an estimator for xm given the observed part
xo of the data. Then the expected mean squared error (MSE) intro-
duced by using the estimate x̂m instead of the true xm is:

MSE[δ|xo] � E
{‖δ(xo)− xm‖2 |xo

}

=

∫
‖δ(xo)− xm‖2 p(xm|xo)dxm

Minimizing the MSE by taking the derivative with respect to δ and
equating it to zero yields the general Minimum Mean Squared Error
(MMSE) solution:

δMMSE(xo) =

∫
xmp(xm|xo)dxm (1)

2.2. Conditional Mean Imputation

Use of the MMSE estimator from the previous section is usually re-
ferred to as conditional mean imputation [2] as it consists in finding
the conditional mean of xm given xo. In the following, we will as-
sume that the joint distribution of xm and xo follows a multivariate
Gaussian distributionN (x; μ, Σ) with

x =

[
xm

xo

]
, μ =

[
μm

μo

]
, Σ =

[
Σm,m Σm,o

Σo,m Σo,o

]
,
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where μ is the mean, Σ the covariance matrix. Then, using Schur’s
decomposition to factorize the covariance matrix, it can be shown
[2] that p(xm|xo) is the conditional Gaussian distribution,

p(xm|xo) = N (xm; μm|o, Σm|o), (2)

with mean and covariance

μm|o = μm + Σm,oΣ
−1
o,o(xo − μo),

Σm|o = Σm,m − Σm,oΣ
−1
o,oΣo,m.

Hence, for the case of a joint multivariate Gaussian distribution, the
MMSE estimator is:

δCMI(xo) =

∫
xmN (xm|μm|o, Σm|o)dxm = μm|o. (3)

2.3. Mean Imputation

If the missing part xm of the data is assumed to be statistically in-
dependent of the observed part xo, the conditional pdf p(xm|xo)
reduces to p(xm). Consequently, the MMSE estimate is just the
mean of the missing part – hence the name mean imputation [2]. For
the case where xm follows a Gaussian distribution we have:

δMI(xo) =

∫
xmN (xm; μm, Σm)dxm = μm. (4)

Note that the use of joint Gaussian distributions with diagonal co-
variance matrix Σ = diag(σ1, . . . , σD) – as in [6] – inevitably leads
to mean imputation.

2.4. Extension to Gaussian Mixtures

As shown in [3], conditional mean imputation with a joint multi-
variate Gaussian distribution can easily be extended to the Gaussian
mixture case

p(x) =

K∑
k=1

ckN (x; μk, Σk) (5)

where ck, μk and Σk are the probability, mean and covariance of the
k-th Gaussian, respecitvely. The corresponding MMSE estimator
can be shown [3] to be

δCMI(xo) =

K∑
k=1

p(k|xo)δCMI,k(xo) (6)

where δCMI,k(xo) is the conditional mean imputation estimate for
the k-th Gaussian – computed according to equation (3) – and where

p(k|xo) =
ckp(xo|k)∑K

k′=1 ck′p(xo|k′)
is the posterior probability of the k-th Gaussian.

3. THE BOX-TRUNCATED MULTIVARIATE GAUSSIAN
DISTRIBUTION

With a box-truncated multivariate Gaussian distribution we mean
a multivariate Gaussian distribution that is truncated to a D-
dimensional box [L1, U1] × · · · × [LD, UD]. It can be formally
defined as

N [L,U ](x; μ, Σ) � 1

c[L,U ]
N (x; μ, Σ)|UL (7)

where c[L,U ] is the normalization constant, N (x; μ, Σ)|UL isN (x; μ, Σ)

on
∏D

d=1 [Ld, Ud], zero outside.

3.1. Normalizing Constant

As truncation removes all probability mass outside the D-dimensional
box given by L and U , the truncated pdf does not integrate to one,
unless we recompute the normalizing constant

c[L,U ] �
∫ U

L

1√
(2π)n|Σ|e

− 1
2 (x−μ)T Σ−1(x−μ)dx. (8)

That, however, constitutes a problem as (8) cannot be computed ana-
lytically. Hence, we have to resort to approximations such as Genz’s
Monte Carlo (MC) approach [8], which is used in current Matlab
versions, but which turned out to be too slow for our application.
We consider two alternatives here: firstly, a diagonal covariance ap-
proximation – which is obtained by zeroing off-diagonal elements –
and secondly, the approximation method derived in the following:

Let Σ−1 = AT A be the Cholesky decomposition of Σ−1 with
A being an upper triangular matrix. Then, substituting A(x− μ) by
z in (8) yields:

c[L,U ] ≈
∫ U′

L′

1√
(2π)n|Σ|e

− 1
2 zT z

√
|Σ|dz

=

∫ U′

L′

n∏
i=1

1√
2π

e−
1
2 z2

i dz, (9)

where L′ = A−1L + μ, U ′ = A−1U + μ and the multiplication

by the Jacobian determinant |dx/dz| =
√|Σ| is due to the change

of variables. Note that after transformation the region of integration
actually is a rotated and scaled box that is no longer parallel to the
axes. The assumption we make here is that the rotated box can still
be reasonably approximated by an axis-parallel one, which in experi-
ments (see section 5) gave better results than the diagonal covariance
matrix approximation. Now, pulling the product out of the integral
in (9) we find that the normalizing constant can be approximated as

c[L,U ] ≈
n∏

i=1

∫ U′
i

L′
i

1√
2π

e−
1
2 z2

i dzi =

n∏
i=1

(C(U ′i)− C(L′i)
)
, (10)

where C denotes the cumulative Gaussian distribution. If the covari-
ance matrix Σ is diagonal (10) is exact, i.e. not an approximation.
The same applies to the following mean approximation.

3.2. Mean

The mean of the box-truncated multivariate Gaussian distribution is
defined as

μ[L,U ] � 1

c[L,U ]

∫ U

L

x
1√

(2π)n|Σ|e
− 1

2 (x−μ)T Σ−1(x−μ)dx

Substituting A(x− μ) by z as in the computation of the normaliza-
tion constant (section 3.1) and again making the same approximation
for the bounds yields

μ[L,U ] ≈ 1

c[L,U ]

∫ U′

L′
(A−1z + μ)

1√
2π

n e−
1
2 zT zdz

= −A−1 1

c[L,U ]

∫ U′

L′

1√
2π

n (−z)e−
1
2 zT zdz

︸ ︷︷ ︸
�m

+μ
1

c[L,U ]

∫ U′

L′

1√
2π

n e−
1
2 zT zdz

︸ ︷︷ ︸
=c[L,U]

= μ−A−1m (11)
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We still have to find a way to compute the remaining integral in m.
In order to do that, we break m into its components by first writing
z as linear combination of standard basis vectors ei and then pulling
the sum over the basis vectors out of the integral:

m =
1

c[L,U ]

∫ U′

L′

n∑
i=1

(−zi)ei
1√
2π

n e−
1
2 zT zdz

=

n∑
i=1

ei
1

c[L,U ]

∫ U′

L′
(−zi)

n∏
j=1

1√
2π

e−
1
2 z2

j dz

︸ ︷︷ ︸
mi

.

Now, making use of the fact that the integral over the product of
two independent factors f1(x1) and f2(x2) can be calculated as the
product of the integrals over the two factors,

∫∫
f1(x1)f2(x2)dx1dx2 =

∫
f1(x1)dx1

∫
f2(x2)dx2,

mi can be calculated as:

mi =
1

c[L,U ]

∫ U′
i

L′
i

(−zi)
1√
2π

e−
1
2 z2

i dzi

︸ ︷︷ ︸
N (U′

i)−N (L′
i)

n∏
j=1
j �=i

∫ U′
j

L′
j

1√
2π

e−
1
2 z2

j dzj

︸ ︷︷ ︸
C(U′

j)−C(L′
j)

.

Expanding c[L,U ] according to equation (10) yields

m =

[N (U ′1)−N (L′1)
C(U ′1)− C(L′1)

· · · N (U ′n)−N (L′n)

C(U ′n)− C(L′n)

]T

. (12)

Note that this is consistent with the result for one-dimensional dou-
bly truncated Gaussian distributions [7]: in the one-dimensional case
we have Σ = σ2, A−1 = σ and hence

μ[L,U ] = μ− σ
N (U ′)−N (L′)
C(U ′)− C(L′) .

As mentioned earlier, (10), (11) and (12) are exact for diagonal co-
variance matrices. So they can be used for the diagonal covariance
approximation, too.

4. BOUNDED CONDITIONAL MEAN IMPUTATION

As motivated in the introduction, the occluded part xm of the sig-
nal is bounded above by the observation ym, below by the minimal
values lm that the signal can assume. In this section we use that to
bound the conditional mean imputation estimate.

4.1. The Gaussian Case

As established in section 2.2, the conditional distribution of xm

given xo is N (xm; μm|o, Σm|o) in the Gaussian case. If xm is
further bounded above by ym, below by lm, the conditional Gaus-
sian distribution has to be replaced by the box-truncated conditional

Gaussian distribution N [lm,ym](xm|μm|o, Σm|o). Hence, in the
bounded case the MMSE estimator becomes

δbcmi(xo,yd) =

∫
xmN [lm,ym](xm|μm|o, Σm|o)dxm, (13)

the mean of the box-truncated conditional Gaussian distribution,
which can be approximated as derived in section 3.2:

μm|o −A−1
m|o

[N (y′m,1)−N (l′m,1)

C(y′m,1)− C(l′m,1)
· · · N (y′m,n)−N (l′m,n)

C(y′m,n)− C(l′m,n)

]T

where l′m = Am|o(lm−μm|o), y′m = Am|o(ym−μm|o) and where
Am|o is the upper triangular matrix from the Cholesky decomposi-

tion of Σ−1
m|o.

4.2. The Gaussian Mixture Case

That can be extended to Gaussian mixture distributions by express-
ing p(xm|xo,ym) as marginal distribution of p(xm, k|xo,ym):

p(xm|xo,ym) =
K∑

k=1

p(xm, k|xo,ym).

Then, rewriting p(xm, k|xo,ym) as p(xm|xo,ym, k)p(k|xo,ym),

with p(xm|xo,ym, k) = N [lm,ym](xm|μm|o, Σm|o), the mean of
the truncated mixture can be shown to be

δbcmi(xo,ym) =
K∑

k=1

p(k|xo,ym)δbcmi,k(xo,ym) (14)

Thereby δbcmi,k is the bounded conditional mean imputation esti-
mate of the kth Gaussian, p(k|xo,ym) is the posterior probability
of the k-th Gaussian:

p(k|xo,ym) =
ckp(xo,ym|k)∑K

k′=1 ck′p(xo,ym|k′)
. (15)

In [4], it was derived that p(xo,ym|k) can be evaluated as:

p(xo,ym|k) =

∫ ym

lm

p(xm,xo|k)dxm

That can be rewritten by expressing p(xm,xo|k) as p(xm|xo, k) ·
p(xo|k):

p(xo,ym|k) = p(xo|k)

∫ ym

lm

p(xm|xo, k)dxm

Then, p(xo,ym|k) can be calculated as

p(xo|ym, k) = N (xo; μo, Σo)

∫ ym

lm

N (xm; μm|o, Σm|o)dxm

︸ ︷︷ ︸
C[lm,ym]

(16)
where C [lm,ym] is exactly the normalizing constant of the box-
truncated Gaussian distribution, which can be approximated as
derived in section 3.1:

C [lm,ym] ≈
n∏

d=1

(C(y′m,d)− C(l′m,d)
)

(17)

with l′m and y′m being defined as defined earlier in this section, in
the paragraph following equation (13).

5. EXPERIMENTS

In order to evaluate the performance of the bounded conditional
mean imputation algorithm devised in section 4 we conducted a
series of automatic speech recognition (ASR) experiments. Thereby
speech came from the MC-WSJ-AV corpus [9], noise was added
from the NOISEX-92 [10] database. As both clean speech and
noise were known, we could perfectly say when noise dominated
the speech spectrum and, hence, run oracle experiments to compare
reconstruction methods under ideal conditions. In a second set of
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Table 1. Word error rate (WER) for oracle experiments with de-
stroyer engine, leopard (tank) and factory2 noise at different SNRs.

reconstruction method

noise SNR none CMI DBMI BCMI1 BCMI2

05 dB 91.7 85.2 81.3 85.0 72.2
engine 10 dB 81.0 73.6 68.7 69.2 61.0

15 dB 70.3 64.9 57.8 54.8 49.3

05 dB 75.7 72.2 62.2 69.9 59.6
factory 10 dB 63.7 57.2 52.2 57.0 53.1

15 dB 55.2 49.4 51.7 49.1 48.2

05 dB 58.7 54.5 50.0 57.8 50.4
tank 10 dB 49.5 49.2 46.5 48.4 48.2

15 dB 45.4 42.3 46.3 45.5 44.0

experiment we used a particle filter to estimate which regions of the
speech spectrum were occluded by noise. This gives a comparison
under more realistic conditions.

In the experiments, feature extraction of our ASR system was
based on Mel frequency cepstral coefficients (MFCC)s. After cep-
stral mean subtraction (CMS) with variance normalization, 15 con-
secutive MFCC features were concatenated and subsequently re-
duced by linear discriminant analysis (LDA) to obtain the final 42-
dimensional feature. The decoder used in the experiments is based
on the fast on-the-fly composition of weighted finite-state transduc-
ers (WFSTs), as described in [11, §8]. The triphone acoustic model
was trained with 30 hours WSJ0 and 12 hours WSJCAM0 data, re-
sulting in 1,743 fully continuous codebooks with a total of 70,308
Gaussians. The auxiliary 128 component clean speech Gaussian
mixture model (GMM) used by the particle filter was trained on the
same data set. Spectral reconstruction was performed in the log-Mel
domain and used the same GMM, however with full covariance ma-
trices, which were estimated in a final training pass.

The oracle experiments shown in Table 1 give a comparison of
the proposed bounded conditional mean imputation (BCMI) method
with standard conditional mean imputation (CMI) as well as diago-
nal covariance bounded mean imputation (DBMI) [6, 7]. Note that
for CMI we enforced the upper bound by resetting those imputed
components that exceeded the upper bound to the upper bound, as
otherwise it consistently performed worse than the baseline. BCMI1

uses the diagonal covariance approximation of the conditional Gaus-
sian distribution, BCMI2 the axis-parallel box approximation de-
scribed in section 3.1. Thereby the latter outperformed the former
in all the oracle experiments. It also outperformed CMI, except on
tank noise at 15dB. DBMI was able to keep up with BCMI2, however
only on tank noise where both methods performed comparably. For
engine noise BCMI2 vastly outperformed all other methods, yielding
a WER that was 20% lower than the baseline and up to 15% lower
than that of CMI.

Table 2 shows WERs for the combination of particle filter
based noise compensation [7] with missing feature reconstruction.
Thereby the particle filter was used to both compensate the noise and
simultaneously estimate the probability of occlusion as described in
[7]. In the paper at hand we quantized the probability of occlusion
to {0, 1} as we do not use a soft-decision approach. While on en-
gine noise BCMI2 outperformed all the other methods, on factory
noise it performed comparably to BCMI1 and DBMI. An interesting
result is that for factory noise at 15dB PF based noise compensation
without reconstruction (none) outperformed oracle based BCMI2.
With reconstruction it improved even further. We regard that as fur-
ther evidence that MMSE noise compensation and missing feature

Table 2. Word error rates (WER)s for particle filter experiments
under different conditions.

reconstruction method

noise SNR none CMI DBMI BCMI1 BCMI2

05 dB 86.7 84.3 84.6 84.4 82.5
engine 10 dB 73.2 71.1 70.1 69.3 67.9

15 dB 63.3 60.0 55.4 56.3 51.5

05 dB 70.6 69.9 67.0 67.5 67.7
factory 10 dB 53.6 53.6 51.2 51.2 51.0

15 dB 45.8 43.7 41.6 41.5 42.4

reconstruction complement each other.
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