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ABSTRACT

Large Vocabulary Continuous Speech Recognition (LVCSR) sys-
tems decode the input speech using diverse information sources,
such as acoustic, lexical, and linguistic. Although most of the un-
reliable hypotheses are pruned during the recognition process, cur-
rent state-of-the-art systems often make errors that are “unreason-
able” for human listeners. Several studies have shown that a proper
integration of acoustic-phonetic information can be beneficial to re-
ducing such errors. We have previously shown that high-accuracy
phone recognition can be achieved if a bank of speech attribute de-
tectors is used to compute a confidence score describing attribute ac-
tivation levels that the current frame exhibits. In those experiments,
the phone recognition system did not rely on the language model
to follow their word sequence constraints, and the vocabulary was
small. In this work, we extend our approach to LVCSR by introduc-
ing a second recognition step during which additional information
not directly used during conventional log-likelihood based decoding
is introduced. Experimental results show promising performance.

Index Terms— Detectors, speech recognition, neural networks.

1. INTRODUCTION

The classical way of formulating automatic speech recognition (ASR)
is as a statistical pattern classification problem [1]. In this approach,
hidden Markov models (HMMs) have been the dominating tech-
nique for acoustic modeling, and knowledge about the language has
usually been represented in terms of of N-gram language models.
The parameters of these models are estimated from large amounts
of task-specific speech and text examples; therefore, either a lack of
data or a mismatch between training and testing conditions usually
causes a severe reduction in accuracy, and the ASR system performs
much worse than human speech recognition (HSR).

In the recent past, several speech scientists have advocated that
a proper integration of some knowledge sources into standard ASR
systems may be useful to bridge the gap between the performance
of the ASR system and HSR, on the same task. Although differ-
ent knowledge-based approaches have been proposed, most of them
try to integrate phonetically motivated information into the design
process. For example, speech knowledge represented by phoneti-
cally motivated acoustic parameters [2, 3] has been embedded into
an HMM-based recognizer at the front-end level. In [4], and [5], ar-
ticulatory knowledge is integrated at the HMM state level. In [6], a
set of artificial neural networks (ANNs) is used to score articulatorily
motivated features for manner and place of articulation. The poste-
rior feature probability outputs from each network are fed into an

ANN that generates phoneme probabilities. This ANN is used as an
emission probability estimator in the HMM framework. In [7], the
classifier outputs are used to directly train a standard HMM-based
system producing an error pattern that differs from a conventional
cepstra-based system, but no improvement is reported when system
combination is carried out. In [8], three landmark-based speech rec-
ognizers are proposed and differ by the pronunciation model used.
The leading idea in the designing process of the ASR systems is
to implement the new theories of nonlinear phonology, articulatory
phonology, and landmark-based speech perception in the form of an
ASR system, along with the use of high-dimensional speech fea-
tures.

We have previously shown that high-accuracy phone recogni-
tion can be achieved for different languages when articulatory moti-
vated features are generated using a bank of speech attribute detec-
tors [9, 10]. We have also introduced an ad-hoc rescoring technique
to integrate articulatory based scores into word lattices [11], and
promising results have been obtained for small vocabulary contin-
uous speech recognition tasks. An aim of this paper is to extend our
work on phone recognition [9] to LVCSR and show that direct inte-
gration of speech knowledge, such as articulatory based scores, can
help remove some “unreasonable” errors which may be obvious for a
human listener but difficult to correct with more sophisticated acous-
tic and language models. As in our previous work, the link between
the observed acoustic evidence and linguistics is established by the
design of a bank of phonetic feature detectors. Each detector com-
putes a score describing an activation level of the specified speech
attributes, such as frication, voicing, etc., that the current frame ex-
hibits. These cues are combined by an event merger that provides
some evidence about the presence of a higher level feature (e.g.,
phone) which is then used during a second pass decoding process
(or rescoring) implemented as in [11] but where the language model
contribution is now considered. Experimental results on the Wall
Street Journal (WSJ0) corpus demonstrate the effectiveness of the
proposed approach for several ASR baseline configurations which
differ in the way the acoustic model is trained and in the language
model adopted during the decoding step. While delivering the best
performance on the WSJ0 corpus is not a key issue of the proposed
study, it is a goal of this work to show that the proposed technique
can correct errors in LVCSR tasks due to constraints imposed by the
lexical and language models that sometimes produce recognition re-
sults that override the underlying acoustic phonetic constraints. Pos-
teriogram plots of the speech detectors are also shown to support this
claim.

The rest of the paper is organized as follows. Section 2 describes
the overall systems in more detail. In particular, the articulatory fea-
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tures used are presented, information about the detection modeling
and process is given, and the event merger is described. The rescor-
ing procedure is outlined in Section 3. Section 4 describes the ex-
perimental results, and Section 5 concludes the paper.

2. SYSTEM OVERVIEW

The overall recognition system consists of two main parts: (1) a word
recognizer that provides word lattices, and (2) a module that provides
phone posterior probabilities needed during the rescoring step. The
former is a LVCSR system designed using the HTK toolkit1. The lat-
ter is the combination of a bank of speech phonetic feature detectors
and non-linear discriminant functions (ANN). The overall system is
a two-stage speech decoder (Figure 1). The set of phonetic features
and a more detailed description of the speech detectors and the event
merger are presented in the following sections.
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Fig. 1. Two-stage LVCSR decoder.

2.1. Phonetic Features

Table 1 lists the set of phonetic features used in our experiments.
This set of 22 features is adopted from [9], and it is a combination
of the Sound Pattern of English (SPE) features defined by Chomsky
and Halle [12], and the manner and place of articulation features
used in [11].

List of phonetic features

fricative glide liquid nasal stop vowel

coronal dental glottal high labial low mid retroflex velar

anterior back continuant round tense voiced silence

Table 1. The set of speech features to be detected. This set is a
combination of manner and place of articulation and SPE features.

It is well known that vowels and consonants cannot be mapped
into a common linguistic space because place of articulation has
been differently defined for them. To circumvent this issue, we fol-
low [13] and force vowels and diphthongs to be organized into the
same place classes as the consonants. Also, we consider all articu-
latory features as binary during the training phase, although some of
them take on non-binary discrete and continuous values.

1HTK toolkit, http://htk.eng.cam.ac.uk/

2.2. Speech Event Detectors & Event Merger

Each speech detector analyzes the input speech signal and produces a
posterior probability that some acoustic-phonetic attribute is present
during the frame being processed. Each detector is implemented
with 3 feed-forward ANNs with one hidden layer and 500 hidden
nodes organized as in [9]. The softmax activation function is used
in the output layer. Energy trajectories in mel-frequency bands that
are organized in split-temporal context [14] are used as parametric
representations of the speech signal. To learn the parameter of each
detector, the training data is separated into feature present and fea-
ture absent regions for every articulatory event of interest using the
available phonetic transcription.

The event merger combines the outputs of the event detectors
using different weights, and it delivers evidences at a phone level.
Therefore, a single feed-forward ANN with one hidden layer and
800 hidden nodes is used. The activation function at the output layer
is the softmax function.

The parameters of both the bank of speech detectors and the
event merger are estimated on the training data from the TIMIT cor-
pus [15]. Actually, these two blocks were trained at the time of
our studies on high-accuracy phone recognition [9], and they have
not been retrained for our experiments on the WSJ0 corpus. This
avoids the cumbersome phase typical of state-of-the-art ASR sys-
tems, which need to be trained from scratch or modified through
adaptation of the acoustic models every time that the speech task
changes.

3. LATTICE RESCORING ALGORITHM

Lattice Rescoring is used as a mechanism to integrate articulatorily
motivated knowledge into the ASR system. First, a speech decoder
generates a collection of competing speech hypotheses. It is then
followed by a rescoring algorithm to re-rank these hypotheses by in-
corporating additional information not directly used in the decoding
process.

The lattice structure adopted in the proposed work reflects the
syntactic constraints of the grammar used during recognition and is
implemented as a direct, acyclic, and weighed graph, G(N, A), with
N nodes and A arcs. The timing information is embedded in the
nodes (i.e., temporal boundaries are given by the arcs’s bounding
nodes); whereas the arcs carry the symbol along with the score in-
formation. In particular, each arc corresponds to a recognized word.

The rescoring algorithm proposed for acoustic evidence in this
work incorporates scores generated by the evidence merger into the
speech lattice, and it is inspired by the decoding scheme based on a
generalized confidence score proposed in [16]. Generally speaking,
combining independent sources of information can be carried out by

p(ot|Λ) = C
NY

i=1

p(ot|Λi)αi

, (1)

where Λi represents the set of acoustic parameters for the i-th sys-
tem, Λ is the set of acoustic parameters of the combined system,
p(ot|Λi) are different independent sources, C is a normalization
constant, and αi is the i-th interpolation weight. In the log-space,
the above multiplication of exponentially weighted terms becomes a
weighted sum.

In our experiment, we assume C equal to 1. Moreover, the
weighted sum is carried out on an arc-by-arc basis using the seg-
mentation generated by the word decoder as a linear combination of
the log-likelihood acoustic score of each arc and the logarithm of
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the event merger associated output that corresponds to the arc phone
label.

3.1. Rescoring Formulation for Word Lattices

Each arc in a lattice corresponds to a word in a string hypothesis. A
word (arc) score, Wn, is computed as follows,

Wn =

KX

i=1

PSi
n. (2)

where PSi
n is the sum of the logarithm of the frame-level phone

probabilities generated by the event merger in correspondence to the
i-th phone in the n-th arc, and K is the number of phones in the word
associated with the n-th arc.

The weighted rescoring formula is finally defined as

Sn = ww Wn + wl Ln, (3)

where wl is the interpolation weights of the log-likelihood score,
and and ww is the interpolation weights of the word-level score Wn.
During the search of the best path in the lattice, the new Sn acoustic
score is combined with the language model score. Finally, it may be
worth pointing out that no sequential information of phonemes in a
word is used to generate the PSi

n.

4. EXPERIMENTS

In the following sections, we present the experimental setup and dis-
cuss the results.

4.1. Experimental Setup

All experiments were conducted on the 5,000-word speaker inde-
pendent Wall Street Journal (5k-WSJ0) corpus. The acoustic model
parameters were estimated using training material from the SI-84 set
(7077 utterances from 84 speakers, i.e., 15.3 hours of speech mate-
rial). The testing material was the Nov92 evaluation set (330 utter-
ances from 8 speakers). As already stated in Section 2.2, the set of
speech detectors and the merger are those used for our phone recog-
nition experiments [9]. Therefore, these two blocks were trained on
the training material provided with the TIMIT corpus, and they were
not further trained for this study.

For our experiments, four different gender independent LVCSR
baseline systems using different acoustic and language models were
built. All four systems were designed with the HTK toolkit. The first
system was based on tied-state cross-word triphone models trained
by Maximum Likelihood Estimation (MLE) and a bigram language
model. The second system employed tied-state cross-word triphone
models trained by MLE and a trigram language model. The third
system used tied-state cross-word triphone models trained by Maxi-
mum Mutual Information (MMI) and a bigram language model. The
fourth system was based on tied-state cross-word triphone models
trained by MMI and a trigram language model. Closed vocabulary
language models for the 5k-WSJ0 vocabulary were used during de-
coding. In all of the above systems each HMM has 3 states with 8
Gaussian mixture components per state. Finally the acoustic vector
contains 12 MFCCs, log energy, velocity, and acceleration coeffi-
cients.

4.2. Experimental Results

The performance of all four systems are summarized in Table 2, and
they are comparable with the results reported in [17]. These base-
lines are also comparable in terms of Word Error Rate (WER) with
more recently reported results (e.g., [18], and [19]). Other studies
show better results than the proposed baseline systems by using dif-
ferent setups (e.g. [20]). Those baseline systems were not available
to us; therefore, the attempt was to improve over available baseline
systems.

Table 2. Word Error Rate For Nov92 task

Bigram Trigram

Baseline (MLE) 7.32% 5.06%

Rescored 7.01% 4.86%

Baseline (MMI) 6.64% 4.60%

Rescored 6.20% 4.39%

The recognition WERs after rescoring are also reported in Ta-
ble 2 and indicate that the rescored system always outperforms the
conventional decoding scheme. In all experiments, the interpolating
weights in Eq. 3 were estimated empirically. The acoustic model and
language model weights are identical for the baseline and rescored
systems. The incorporation of scores generated from the knowledge
module improves the baseline systems in all of the experiments.

Fig. 2. Spectrogram (upper panel) and posteriogram (bottom panel)

for the utterance numbered 446c0210 in the region of the recognition

error.

Some examples illustrate the effect of the rescoring. The cor-
rect sequence of words for the utterance numbered 441c020t in the
Nov92 set is: Has exposure really been reduced. The force of the
trigram language model leads the decoding process to generate the
sentence Has exposure are really been reduced. When rescoring is
applied, the correct sentence is restored, and the insertion error (e.g.,
the word “are”) is removed. A better understanding of the rescor-
ing effect can be gained by using the posteriogram plots. Towards
this end, we consider the utterance numbered 446c0210. The correct
sequence of words is The company said its European banking affili-
ate Safra republic plans to raise more than four hundred fifty million
dollars through an international offering, but the MMI-based system
produced stock for instead of Safra when a trigram language model
was used. The bottom panel of Figure 2 shows the posteriogram
plot, which is the time evolution of the speech detector output, in
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the location around the error. The posterior evolution is shown only
for some of the detectors, namely (top to bottom), fricative, glide,
liquid, nasal, silence, stop, and vowel, to avoid cluttered plots. The
spectrogram of the word Safra is shown in the upper panel. In the
posteriogram, the decoded (erroneous) word transcription is shown
on the upper side. The positions of the stop sounds “t” and “k”,
which belong to the recognized word “stock”, are superimposed at
the bottom. The posteriogram shows that the output of the stop de-
tector is null, and the spectrogram confirms the lack of stop events.
During the second decoding step, such information can be useful to
correct the LVCSR errors, as in this example. Obviously, the de-
tectors are not perfect, some errors cannot be recovered and others
can be introduced during rescoring, yet an overall improvement was
observed in all of our experiments.

5. CONCLUSION

This paper studies the utility of incorporating acoustic phonetic in-
formation not directly utilized by the conventional ASR systems dur-
ing the decoding phase with particular attention to the LVCSR task.
Such articulatory information was obtained through a data-driven
approach based on a bank of speech detectors and an event merger.
To show that portability and generality are two key properties of the
proposed framework the set of detectors and merger used during the
rescoring phase are not retrained for the current task. Experimental
evidence clearly demonstrates that the proposed approach improves
the performance of ASR systems in several continuous speech recog-
nition applications. Moreover, these experiments show that the pro-
posed approach is particularly effective in dealing with errors that do
not observe strict acoustic phonetic constraints.

The set of detectors and the merger can be further improved by
introducing additional phonetic features and using more sophisti-
cated data-driven approaches. Nonetheless, the goal of this study
was to extend our detector based approach to the LVCSR task, and
verify whether our approach can help remove some of the decod-
ing errors caused by linguistic constraints. Our ongoing research
includes the refinement of the bank of speech event detectors using
more sophisticated data-driven techniques.
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