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ABSTRACT

This paper presents a new approach to speech modeling and recog-
nition. The new approach consists of a statistical model to represent
up to sentence-long temporal dynamics in the training data, and an
algorithm to identify the matching segments with maximum conti-
nuities between the training and testing sentences. Recognition is
performed by combining the longest matching segments found from
the training sentences. Because of their richer and more distinct tem-
poral dynamics, longer speech segments as whole units can be recog-
nized with lower error rates than shorter speech segments. Therefore
basing recognition on the longest matching segments optimizes the
discrimination and hence recognition of speech. The new approach
has been evaluated on the TIMIT database for identifying matching
speech segments. The results obtained are encouraging given the
very low parametric complexity of the new model.

Index Terms— temporal dynamics, speech modeling, speech
segmentation, speech recognition

1. INTRODUCTION

A speech signal has two distinct features: its temporal dynamics,
subject to acoustic, lexical and language constraints, and its speaker
characteristics. These two features separate a speech sentence from
non-speech noise, and from other speakers’ sentences. Most con-
ventional speech recognition systems use context-dependent phones
as the primary units to model and recognize speech. This has proven
to be very effective, in terms of the richness of the acoustic-phonetic
training data in many reasonably-sized databases. However, pho-
netic models are only capable of representing the neighboring pho-
netic contexts. They lack the ability to represent long-range tempo-
ral dynamics, which determines how the individual phonetic sounds
are dependent on one another to form a realistic speech sentence.
Losing this information, and given the short duration of and hence
limited discrimination between the phonetic sounds, conventional
speech recognizers lack the robustness to noise.

Over the past years, how to effectively model long-range tem-
poral dynamics in speech has been a research focus. Various ap-
proaches have been proposed as an alternative to the conventional,
phone-based hidden Markov model (HMM) framework. Typically,
these new approaches include the segmental approaches, the dy-
namic system approaches, and the example-based approaches. In
segmental approaches (e.g., [1][2]), phones or phonetic sequences
are modeled as segments to capture the dependence within these
structures. In dynamic system approaches, some form of linear
or nonlinear dynamic system is used to represent the underlying
dynamics of speech (e.g., [3]–[5]). More recently, templates or
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example-based approaches have received renewed interest for their
capability to represent long-range temporal dynamics in speech
(e.g., [6]–[8]). In contrast to other statistical modeling approaches,
templates involve fewer assumptions/manipulations on the speech
data and, thus, may be capable of more precisely representing the dy-
namics within speech. However, unlike statistical models, templates
lack smoothness (and hence robustness) in representing short-time
speech spectra, which are subjected to random variations.

In this paper, we add a new solution to the problem. We study
the optimal extraction of long-range temporal dynamics in speech
for speech recognition. We optimize the extraction by maximizing
the size of the primary units to be identified in the testing speech.
Larger primary units (e.g., phone sequences, syllables or words)
contain richer and more distinct dynamics than individual phones,
and thereby they can be recognized with lower error rates. There-
fore maximizing the primary units to be identified effectively opti-
mizes the discrimination and hence recognition of speech. In this
paper, we describe a system that implements the proposed optimiza-
tion. The system consists of two parts: (1) a method to model the
complete temporal dynamics in each training sentence, such that
any segment of any length in the sentence, up to the complete sen-
tence, can be used as a whole unit to identify the corresponding
segments/units in the testing speech, and (2) algorithms to identify
matching segments with large continuities, and to perform recogni-
tion based on the longest matching segments between the training
and testing sentences. The difference between our new approach
and the conventional template-based approaches will become clear
during the course of the description.

2. MODELING LONG-RANGE TEMPORAL DYNAMICS

First, we model the complete temporal dynamics in each training
sentence, such that any segment of any length in the sentence, up to
the complete sentence, can be used as a whole unit to identify the
corresponding segments/units in the testing sentence. We use a new
example-based approach, as opposed to conventional templates, to
build the models. We first train a Gaussian mixture model (GMM)
using all the training sentences. Then, based on the GMM, we fur-
ther build a model for each specific training sentence to represent
the full temporal dynamics in that sentence. Denote by G the GMM
trained on all the training data for short-time speech spectra x:

G = {g(x|m), w(m) : m = 1, 2, ..., M} (1)

where g(x|m) is the m’th Gaussian component and w(m) is the
corresponding weight. Let x = {xi : i = 1, 2, ..., Ix} be a train-
ing sentence represented by Ix frames and xi being the frame at
time i. We can obtain a new representation for x by taking each
frame from the sentence and finding the Gaussian component in
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G that maximizes the likelihood of the frame. This results in a
time sequence of maximum-likelihood Gaussian components as a
model for x, alternative to the template. In the model, the individ-
ual Gaussian components represent the probability distributions of
short-time speech spectra at different times, and the time sequence
represents the complete temporal dynamics governing the short-time
spectra, from acoustic to lexical and to language to form the specific
training sentence. Let g(x|mx,i) be the Gaussian component iden-
tified from G that maximizes the likelihood of frame xi in training
sentence x. Then we can express the new model – the maximum-
likelihood Gaussian sequence – for training sentence x by using the
corresponding index sequencemx:

mx = {mx,i : i = 1, 2, ..., Ix} (2)

It may be noticed that the above model G and mx for train-
ing sentence x is similar to an HMM. Indeed, each g(x|mx,i) in
the model can be viewed as an emission probability density and
the sequence index i can be viewed as an index of the state. With
a left-to-right state transition, the model forms a time sequence of
Gaussian probability densities that characterizes, statistically, the
full temporal-spectral activities in x. Recently, there are studies
into example-based approaches to speech recognition (e.g., [6]–[8]).
These seek more accurate representations of long-range temporal dy-
namics of speech by making fewer assumptions about the speech.
The above model (1) and (2) combines statistical and template-based
approaches seamlessly in the same framework, representing a bal-
ance between a smooth representation for the short-time spectra and
a sentence-long representation for the temporal dynamics.

3. IDENTIFYING MATCHING SEGMENTS WITH LARGE
CONTINUITIES

In recognition, we compare the testing sentence with each of the
training sentence models to identify all their matching segments.
Then we form a recognition by combining the longest matching seg-
ments found from the training sentences. Because of their richer
and more distinct temporal dynamics, longer speech segments as
whole units can be registered more accurately than shorter speech
segments. Therefore basing recognition on the longest matching seg-
ments increases the chance of correct recognition. In the following,
we describe an algorithm for identifying matching segments with
large continuities.

Let y = {yt : t = 1, 2, ..., T} be a testing sentence with T
frames, and yτ :t = {yε : ε = τ, τ + 1, ..., t} be a testing seg-
ment in y consisting of consecutive frames from time τ to t. Let
mx,u:v = {mx,i : i = u, u + 1, ..., v} represent a training seg-
ment from model mx, addressing the Gaussian sequence modeling
consecutive frames from u to v in training sentence x. We measure
the similarity between the two segments, yτ :t and mx,u:v , by using
the posterior probability of the training segment mx,u:v given the
testing segment yτ :t. Assuming an equal prior probability for all the
training segments, the posterior probability may be expressed as

P (mx,u:v|yτ :t) =
p(yτ :t|mx,u:v)

p(yτ :t)

=
p(yτ :t|mx,u:v)�

x′
�

u′,v′ p(yτ :t|mx′,u′:v′) + p(yτ :t|φτ :t)
(3)

where p(yτ :t|mx,u:v) is the likelihood function. We can calculate
the likelihood function by using the Viterbi algorithm, which will
find the most-likely time map between the two segments. In the

calculation, we assume that the frames within a segment are inde-
pendent of one another. As such, p(yτ :t|mx,u:v) can be written as

p(yτ :t|mx,u:v) = max
iε

t�

ε=τ

g(yε|mx,iε) (4)

where iε is the time map function assuming iτ = u and it = v.
As with the usual Viterbi algorithm, we allow a testing segment yτ :t

with length lτ :t = t − τ + 1 to be compared with training segments
mx,u:v with variable lengths from v − u + 1 = lτ :t/2 to 2lτ :t, to
search for the matching training segment.

In the denominator of (3), the first term corresponds to all the
training segments, of variable origins and lengths from all the train-
ing sentences, that are likely to match the testing segment yτ :t. The
second term corresponds to the likelihood that yτ :t, as a whole unit,
matches a segment φτ :t that is unseen in the training sentences, as-
suming an equal prior as mx,u:v . This likelihood can be suitably
formed on the universal GMM (1). The following shows a model
capable of modeling the likelihoods for arbitrary speech segments:

p(yτ :t|φτ :t) �
t�

ε=τ

M�

m=1

w(m)g(yε|m) (5)

The posterior probability defined in (3) has an important char-
acteristic: it favors the continuity of the matching segments, in
terms of giving larger values for longer matching segments com-
pared as whole units. To show this, assuming that yτ :t and
mx,u:v are a pair of matching segments such that likelihoods
p(yτ :t|mx,u:v) ≥ p(yτ :t|mx′,u′:v′) for any mx′,u′:v′ �= mx,u:v ,
and p(yτ :t|mx,u:v) ≥ p(yτ :t|φτ :t). Express yτ :t as a union of
two consecutive subsegments yτ :ε and the complement yε+1:t, and
mx,u:v as a union of the corresponding matching training subseg-
mentsmx,u:iε (for yτ :ε) andmx,iε+1:v (for yε+1:t). We can have

p(yτ :t|mx,u:v)

p(yτ :t|mx′,u′:v′)
=

p(yτ :ε|mx,u:iε)p(yε+1:t|mx,iε+1:v)

p(yτ :ε|mx′,u′:i′ε)p(yε+1:t|mx′,i′ε+1:v′)

≥ p(yτ :ε|mx,u:iε)

p(yτ :ε|mx′,u′:i′ε)
(6)

This because p(yε+1:t|mx,iε+1:v)/p(yε+1:t|mx′,i′ε+1:v′) ≥ 1 based
on the assumption that yε+1:t andmx,iε+1:v match. In a similar way,
we can have an inequality concerning the likelihood ratio associated
with φτ :t:

p(yτ :t|mx,u:v)

p(yτ :t|φτ :t)
≥ p(yτ :ε|mx,u:iε)

p(yτ :ε|φτ :ε)
(7)

Applying (6) and (7) to (3) we can obtain two inequalities concerning
the posterior probability:

P (mx,u:iε |yτ :ε) ≤ P (mx,u:v|yτ :t) (8)
P (mx,u:iε |yτ :ε)P (mx,iε+1:v|yε+1:t) ≤ P (mx,u:v|yτ :t) (9)

Inequalities (8) and (9) indicate that the posterior probability in-
creases with the continuation of the matching segments, and with
comparing successive matching segments as whole units rather than
as isolated units. Large posterior probabilities, thus, indicate large
continuities between the matching training and testing segments.

Given a testing sentence, we will compute the posterior prob-
ability P (mx,u:v|yτ :t) for every testing segment yτ :t against every
training segment mx,u:v for every training sentence x. This full
search will expose all matching segments between the training and
testing sentences of arbitrary length up to the complete sentences.
We will form a recognition based on the longest matching training
segments, indicated by the maximum posterior probabilities.
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Fig. 1. Histogram of the length of the optimal segments identified
on the testing sentences.

4. RECOGNITION BASED ON OPTIMAL SEGMENTS

We use dynamic programming (DP) to combine the training seg-
ments with large posterior probabilities (and hence large continu-
ities) into a complete sentence, as a recognition of the testing sen-
tence. We create a posterior probability for the complete testing sen-
tence by concatenating the segmental posteriors P (mx,u:v|yτ :t); DP
is used to maximize this sentence posterior by optimizing the start-
ing time τ and ending time t of each segment. This will result in a
recognition focusing long matching segments between the training
and testing sentences. As these large matching segments are com-
pared as whole units, we expect increased acoustic discrimination.

Let δ(t) represent a partial logarithmic posterior ending at time
t. We have the following recursion for an optimal segmentation for
the testing sentence:

δ(t) = max
τ

[δ(τ − 1) + lτ :t max
x

max
u,v

ln P (mx,u:v|yτ :t)] (10)

The maximization inside the brackets seeks the training segment that
best matches the given testing segment yτ :t; the maximization out-
side the brackets maximizes the continuity of the matching segments
over the complete sentence. In (10), lτ :t is the length of segment
yτ :t, introduced to normalize the sentence scores across different
segmentations. We form the recognition by concatenating the op-
timal training segments mx,u:v associated with the individual yτ :t,
which can be retrieved after obtaining δ(T ).

The full search for the optimal training segments can be accel-
erated by dynamically pruning those training segments producing
small likelihoods p(yτ :t|mx,u:v) for a given testing segment.

5. EXPERIMENTAL STUDIES

The TIMIT database was used in the study. We have evaluated the
new approach in two aspects: (1) the ability to identify matching
segments between the training and testing sentences, and (2) the ap-
plicability to speech recognition. For the first aspect, we considered
the synthesis of the testing sentences using the matching training
segments. For the second aspect, we considered the use of the pho-
netic transcripts associated with the matching training segments to
label the testing segments/sentences.

The speech was divided into frames of 20 ms with a frame pe-
riod of 10 ms. We used a 39-dimensional feature vector for each
frame, consisting of cepstral coefficients C1 – C12 and normalized
log energy, appended with their first- and second-order delta coeffi-
cients. The TIMIT database contains 3696 training sentences from

Fig. 2. Histogram of the number of phones spanned by the optimal
segments.

462 speakers (326 male, 136 female). We pooled all the training
sentences together and trained a universal GMM, (1), with 4096
Gaussian components each with a diagonal covariance matrix. Then
we built a model, (2), for each training sentence. Since all the 3696
training sentence models were built on the same 4096 Gaussian com-
ponents, our system has a low parametric complexity in comparison
to most recognition systems that use context-dependent acoustic-
phonetic models. We performed the experiments on the core test set,
consisting of 192 sentences from 24 untrained speakers (16 male, 8
female). While the new approach is capable of detecting matching
segments with arbitrary lengths up to the complete sentences, in the
experiments we restricted the search for the matching segments to a
maximum length of 50 frames, or 510 ms, to reduce the amount of
computation.

The new system segmented the 192 testing sentences, with a
total of 58,015 frames, into 2,541 segments each matched by a
segment found from the training sentences with optimal continuity.
Fig. 1 shows the distribution of the length of these 2,541 optimal
segments, with an average segment length of 22.8 frames. Fig. 2
shows the segment length in the number of phones spanned by the
optimal segments, with an average length of 3.8 phones. Table 1
presents two specific examples for segmenting and recognizing two
sentences, one from a male speaker (shorter) and the other from a
female speaker (longer), labelled using the 61 phonemic/phonetic
symbols used in TIMIT. Shown in the table are the optimal seg-
mentation and the recognized phonetic transcript for each segment,
compared to the reference transcript. In the table, we optionally
place a sign ‘–’ to the left/right of a segment, to indicate that the
segment only contains part of the phones located at the borders of
the segment. As each pair of the variable-length training and testing
segments were compared as two whole units, the new system ex-
tracted the temporal dynamics over phonetic sequences. However,
we notice that the system has rarely found the matching segments
at the exact phonetic boundaries, which may indicate that phonetic
boundaries are not stable islands for separating speech sounds.

To gain an idea about the phone recognition accuracy by the new
system, we summarized the phone accuracy between the matching
segments, as illustrated in Table 1. In the summarization, the incom-
plete phones at the borders between adjacent segments were treated
as optional and mutually replaceable, as a way of modeling the un-
certainty of the partial phones at the borders of segments. Following
convention, we differentiated 39 phone classes. Table 2 presents
the results, with comparisons to some of the previous best results
reported on the core test set. The new system has not yet been com-
parable to other state-of-the-art systems but note that it has a much
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Fig. 3. Synthesis of two testing sentences by concatenating match-
ing training segments with optimal continuities (left: original, right:
synthesized).

lower parametric complexity, using only 4096 diagonal Gaussians.
We can synthesize the testing sentences by concatenating the

Gaussians corresponding to the optimal matching training segments.
Fig. 3 shows examples for synthesizing the two sentences in Table 1.
As the new approach seeks maximum acoustic continuity, the vast
majority of the synthesized sentences well resemble the original ones
both naturally and with good word resolution, despite the difference
in phonetic transcripts between some of the matching segments.

6. CONCLUSIONS

This paper described a new approach for modeling, segmenting and
recognizing speech. The new approach consists of a sentence model
to represent up to sentence-long temporal dynamics in the training
data, and an algorithm to identify the matching segments with large
continuities between the training and testing sentences. Recognition
is performed by combining the longest matching segments from the
training sentences. This should improve the separation of speech by
exploiting their differences in long-range temporal dynamics. Pre-
liminary experiments on the TIMIT database have shown encourag-
ing results for identifying matching speech segments given the very
low parametric complexity of the new approach.
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