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ABSTRACT

We address the problem of single-channel speech separation and
recognition using loopy belief propagation in a way that enables
efficient inference for an arbitrary number of speech sources. The
graphical model consists of a set ofN Markov chains, each of which
represents a language model or grammar for a given speaker. A
Gaussian mixture model with shared states is used to model the hid-
den acoustic signal for each grammar state of each source. The com-
bination of sources is modeled in the log spectrum domain using
non-linear interaction functions. Previously, temporal inference in
such a model has been performed using an N–dimensional Viterbi
algorithm that scales exponentially with the number of sources. In
this paper, we describe a loopy message passing algorithm that scales
linearly with language model size. The algorithm achieves human
levels of performance, and is an order of magnitude faster than com-
petitive systems for two speakers.

Index Terms— Speech separation, loopy belief propagation, facto-
rial hidden Markov models, ASR, Iroquois, Algonquin, Max model.

1. INTRODUCTION

Existing automatic speech recognition (ASR) research has focused
on single-talker recognition. In many scenarios, however, the acous-
tic background is complex, and can include speech from other talk-
ers. Such input is easily parsed by the human auditory system, but is
highly detrimental to the performance of conventional ASR systems.
The recently introduced Pascal Speech Separation Challenge (SSC)
involves recognizing a target speaker in the presence of a simulta-
neously speaking masker, using a single channel (see [1] for details,
and a review of the state of the art).
The system presented in [2] is currently the best-performing system
on the SSC, and outperforms human listening results on the task.
The performance of this system hinges on the efficacy of the sep-
aration component of the system, which models each speaker by a
layered, factorial hidden Markov model (HMM). In [2], approxima-
tions were used to make inference in this model tractable, but infer-
ence still scaled exponentially with the number of sources. When
the speaker vocabulary is large or there are more than two talkers,
we have to find more efficient methods.
Loopy belief propagation (LBP) has in recent years been success-
fully applied in many fields—including communications, computer
vision, and molecular biology—to solve inference problems that are
intractable using exact methods [3, 4].Despite the prominent use of
belief propagation algorithms in ASR research and commercial ap-
plications (such as the Viterbi algorithm and the forward-backward
algorithm for HMMs), and the importance of computational effi-
ciency, little work has investigated using LBP for ASR [5].

In this paper, we present a loopy belief propagation algorithm for
multi-talker speech separation and recognition using a single chan-
nel. The algorithm outperforms human listeners on the SSC task, at
a fraction of the computational cost of previously published systems
that can achieve such performance.

2. SPEECH SEPARATIONMODELS

We use the same two-speaker model detailed in [2], and depicted in
Figure 2(a). The model consists of an acoustic model and a temporal
dynamics model for each speaker (see Figure 1), as well as a interac-
tion model, which describes how the source features are combined
to produce the observed mixture spectrum. We also use all of the
optimizations given in [2] when doing exact inference in this model.
Acoustic Model: For a given speaker, a, we model the condi-
tional probability of the log-power spectrum of each source sig-
nal xa given a discrete acoustic state sa as Gaussian, p(xa|sa) =
N (xa; μsa ,Σsa), with mean μsa , and covariance matrixΣsa . For
efficiency and tractability we restrict the covariance to be diago-
nal. This means that p(xa|sa) =

∏
f N (xa

f ; μf,sa , σ2
f,sa), for fre-

quency f . Hereafter we drop the f when it is clear from context
that we are referring to a single frequency. In this paper we use
Ds = 256 gaussians to model the acoustic space of each speaker.

va
t−1

sa
t−1

xa
t−1

va
t

sa
t

xa
t

Fig. 1. Generative model for the features, xa, of single source: an
HMM with grammar states, va, sharing common acoustic states, sa.

Grammars: The task grammar is represented by a sparse matrix of
state transition probabilities, p(va

t |v
a
t−1). The association between

the grammar state va and the acoustic state sa is captured by the
transition probability p(sa|va), for speaker a. These are learned
from clean training data using inferred acoustic and grammar state
sequences.

3. SPEECH INTERACTIONMODELS

The short-time log spectrum of the mixture yt, in a given frequency
band, is related to that of the two sources xa

t and xb
t via the in-

teraction model given by the conditional probability distribution,
p(yt|x

a
t , xb

t). The joint distribution of the observation and source
features in one feature dimension, given the source states, is:

p(yt, x
a
t , x

b
t |s

a
t , s

b
t) = p(yt|x

a
t , x

b
t)p(xa

t |s
a
t )p(xb

t|s
b
t). (1)
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Fig. 2. a) Generative model of mixed features. The source models
are combined with an interaction model to explain the data. Here xa

and xb have been integrated out. b) The same model with combined
acoustic and grammar states to eliminate loops.

To infer and reconstruct speech we need to compute the likelihood
of the observed mixture given the acoustic states,

p(yt|s
a
t , s

b
t) =

∫
p(yt, x

a
t , x

b
t |s

a
t , s

b
t)dx

a
t dx

b
t , (2)

and the posterior expected values of the sources given the acoustic
states and the observed mixture,

E(xa
t |yt, s

a
t , s

b
t) =

∫
x

a
t p(xa

t , x
b
t |yt, s

a
t , s

b
t) dx

a
t dx

b
t , (3)

and similarly for xb
t . These quantities, combined with a

prior model for the joint state sequences {sa
1..T , sb

1..T}, allow
us to compute the minimum mean squared error (MMSE) es-
timators E(xa

1..T |y1..T ) or the maximum a posteriori (MAP)
estimate E(xa

1..T |y1..T , ŝa
1..T , ŝb

1..T ), where ŝa
1..T , ŝb

1..T =
arg maxsa

1..T
,sb

1..T
p(sa

1..T , sb
1..T |y1..T ), and the subscript, 1..T ,

refers to all frames in the signal.
We explore two popular interaction models for which the integrals
in (2) and (3) can be readily computed: Algonquin, and the max
model. For signals added in the time domain, the Fourier transform
of their sum is the sum of their individual Fourier transforms: Y =
Xa + Xb. More generally, Y =

∑
k∈KXk for a set of N = |K|

signals. In the power spectrum,

|Y |2 =
∑
k∈K

|Xk|2 +
∑
j �=k

|Xj ||Xk| cos(θj − θk), (4)

where θk is the phase of sourceXk. Assuming that the phase differ-
ences are uniformly distributed:

E
(
|Y |2

∣∣{Xk}
)

=
∑

k

|Xk|2. (5)

Moving the approximation into the log domain, where xk �

log |Xk|2 (and similarly for y) we have

y = log

⎛
⎝∑

k∈K

exp(xk) +
∑
j �=k

exp(
xj + xk

2
) cos(θj − θk)

⎞
⎠ .

Algonquin: In the two-speaker case, Algonquin approximates this
by neglecting the phase term, and using a Gaussian to model the
resulting uncertainty [6]. Applying the same model to N speakers:

p(y|{xk}) = N (y; f({xk}), ψ2), (6)
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Fig. 3. Max model: a) the prior normal density, p(xa|sa)×p(xb|sb),
is shown for a single feature dimension. Its intersection with the
likelihood delta function δy−max(xa,xb), for y = 0, is represented
by the red contour. b) the likelihood, p(y = 0|sa, sb), is the integral
along this contour, and the posterior, p(xa, xb|y = 0, sa, sb), is the
prior evaluated on this contour, normalized to integrate to one.

f({xk}) = log(
∑

k

exp(xk)). (7)

A Newton-Laplace algorithm is used to iteratively linearize
f({xk}), approximate both p(y|{sk}) and the conditional posterior
p({xk}|y, {sk}) as Gaussian, and estimate the conditional expecta-
tion E(xk|y, {sk}). With multiple speakers the complexity of the
Newton-Laplace method is O(N3DN

s ) in each frequency band, for
diagonal covariance acoustic models. Thus scaling Algonquin to
larger models with more speakers is challenging.
Max model: The max model is an alternative to Algonquin that
only requires O(NDs) computations of the univariate gaussian pdf
and cumulative density functions per frequency band, followed by
O(NDN

s ) operations to compute p(y|{sk}) and E[xk|y, {sk}].
Joint inference under the max model therefore requiresO(N2) fewer
operations than Algonquin.
The max model was first used in [7] for noise adaptation, where
it was argued that for two additive signals, y ≈ max(xa, xb).
In [8], such a model was used to compute state likelihoods and
find the optimal state sequence. Recently [9] showed that in fact
Eθ(y|x

a, xb) = max(xa, xb) for uniformly distributed phase. The
result holds for more than two signals when |

∑
j �=k

Xj | ≤ |Xk| for
any k. In general the max no longer gives the expected value, but
can still be used as an approximate likelihood function:

p(y|{xk}) = δy−maxk{x
k}, (8)

where δ(.) is a Dirac delta function.
To compute MMSE estimates of the source features using the max
model requires computing p({sk}|y). The max model likelihood
function is piece-wise linear and so p({xk}|y, {sk}), p(y|{sk}),
and E(xk|y, {sk}) all have closed-form expressions.
We follow the derivation of the posterior for two signals given in [7],
and depicted in Figure 3. Define pxk (y|sk) � p(xk = y|sk) =
N (xk = y|μsk , σ2

sk ) for random variable xk, and the normal cu-
mulative distribution function Φxk(y|sk) � p(xk ≤ y|sk) =∫ y

−∞
N (xk; μsk , σ2

sk )dxk. The truncated expected value is given
by:

E(xk|xk
< y, {sk}) = μsk −

σ2
skpxk(y|sk)

Φxk (y|sk)
. (9)

Since the signals are independent, the cdf of y decomposes:

p(y ≤ y|{sk}) = p(max{xk} ≤ y|{sk}),

=
∏
k

Φxk(y|sk). (10)
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The state likelihoods are then obtained by differentiating:

p(y|{sk}) =
∑

k

pxk(y|sk)
∏
j �=k

Φxj (y|s
j). (11)

From this we readily see that the individual terms in the above sum
correspond to p(y = y, xk = y|{sk}). The conditional probability
that source k is maximum then is:

πk � p(xk = y|y = y, {sk}) =

(∑
j

pxj (y|s
j)

Φxj (y|sj)

)−1
pxk (y|sk)

Φxk(y|sk)
.

The expected value of each signal given the observation and states
can now be written using (9)

E(xk|y, {sk}) = πky + (1 − πk)E(xk|xk
< y, {sk}),

= πky + (1 − πk)

(
μk −

σ2
kpxk(y|sk)

Φxk (y|sk)

)
.

The loopy belief propagation algorithm presented in this
paper requires that the marginal likelihoods p(y|sk) =∑

sj �=sk

∏
j �=k

p(sj)
∏

f
p(yf |{s

i}) be iteratively computed
for each source. In general this computation requires at least
O(DN

s ) operations per source, because all possible combinations
of acoustic states must be considered. This is the case for both
Algonquin and the max model. Under the max model, however,
the data likelihood in a single frequency band (11) consists of N

terms, each of which factor over the acoustic states of the sources.
Currently we are investigating linear-time algorithms (O(NDs))
that exploit this property to approximate p(y|sk).
In many combinations of states one model may be significantly
louder than the others μsk � μ{sj �=k} in a given frequency band,
relative to their variances. In such cases we can closely approx-
imate the likelihood as p(y|{sk}) ≈ pxk(y|sk), and the poste-
rior expected values according to E(xk = y|y, {sk}) ≈ y and
E(xk < y|y, {sk}) ≈ min(y, μsk ). This results in a significantly
faster algorithm. In our experiments the approximation made no sig-
nificant difference in accuracy and is therefore used in place of the
exact max algorithm.

4. INFERENCE

In [2] exact inference was done in this model using a 2–D Viterbi
search on the product model HMM shown in figure 2(b). Given the
most likely state sequences of both speakers, MMSE estimates of
the sources can be computed using Algonquin or the max model,
and averaging over acoustic states. Once the log spectrum of each
source is estimated, the corresponding time-domain signal can be
recovered using the phase of the mixture features.
The exact inference algorithm is derived by combining the state vari-
ables into the joint states st = (sa

t , sb
t) and vt = (va

t , vb
t ). The

model can then be treated as a single hidden Markov model with
transitions given by p(va

t |v
a
t−1) × p(vb

t |v
b
t−1), and likelihoods from

Eqn. (1). However inference in such a factorial HMM is more ef-
ficient if a two–dimensional Viterbi search is used to find the most
likely joint state sequences va

1..T , vb
1..T . With N speakers, the cor-

responding N–D Viterbi algorithm has complexity O(NDN+1
v ) per

frame, where Dv is the number of grammar states [2]. In practice
the complexity is somewhat less than this due to the sparseness of
the grammar and the use of state pruning, or beam search.
Belief Propagation: To avoid the combinatorial explosion of exact
inference, which scales exponentially with the number of speakers

N , we can iteratively estimate the configurations of the speakers.
Using the max-product belief propagation method [4, 10], temporal
inference can be accomplished with complexity O(TND2

v).
The max-product algorithm can be viewed as a generalization of the
Viterbi algorithm to arbitrary graphs of random variables. For any
probability model defined on a set of random variables x � {xi}:

p(x) ∝
∏
C∈S

fC(xC), (12)

where the factors fC(xC) are defined on subsets of variables xC �

{xi : i ∈ C}, and S = {C}. Inference using the algorithm con-
sists of iteratively passing messages between “connected” random
variables of the model. For a given random variable xi, the message
from variable set xC\i � {xj : i ∈ C, j �= i ∈ C} to xi is:

mxC\i→xi
(xi) = max

xC\i

fC(xC)
∏

j∈C\i

q(xj)

mxC\j→xj
(xj)

, (13)

x̂C\i(xi) = arg max
xC\i

fC(xC)
∏

j∈C\i

q(xj)

mxC\j→xj
(xj)

, (14)

where x̂C\i(xi) stores the maximizing configuration of xC\i for each
xi, and q(xi) =

∏
C:i∈C mxC\i→xi

(xi) is the product of all mes-
sages to variable xi from neighboring variables.
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Fig. 4. Message passing sequences (m1 . . . m10). The messages
shown in a chain, such asm4, are passed sequentially along the en-
tire chain, in the direction of the arrows, before moving to the next
message. Note that messages m6 through m10 are the same as m1

throughm5, but with a and b swapped.

Optimization consists of passing messages according to a message
passing schedule. When the probability model is tree-structured, the
global MAP configuration of the variables can be found by prop-
agating messages up and down the tree, and then “decoding”, by
recursively evaluating x̂C\i(xi) ∀ C : i ∈ C, starting from any xi.
When the model contains loops, as do the models we consider here,
the messages must be iteratively updated because there are cycles in
the graph, and there is no guarantee that this approach will converge
to the MAP configuration. However, if the algorithm converges, the
MAP estimate is guaranteed to be a local MAP configuration over a
potentially exponentially large neighborhood [10].
A natural message-passing schedule is to alternate between passing
messages from one grammar chain to the other, and along the gram-
mar chain of the receiving source, as shown in Figure 4. All mes-
sages are initialized to be uniform, and va

1 and vb
1 are initialized to

their priors.
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There are four phases of inference:
1. Pass messages from source b to source a through the interaction
function p(yt|s

a
t , sb

t) for all t (messagesm1-m3):

m1(s
b
t) � mvb

t→sb
t

= max
vb

t

p(sb
t |v

b
t )mvb

t−1
→vb

t
mvb

t+1
→vb

t

m2(s
a
t ) � msb

t→sa
t

= max
sb

t

p(yt|s
a
t , s

b
t)mvb

t→sb
t

m3(v
a
t ) � msa

t→va
t

= max
sa

t

p(sa
t |v

a
t )msb

t→sa
t

2. Pass messages forward along the grammar chain for source a, for
t = 1..T , and then backward, for t = T..1 (messagesm4-m5):

m4(v
a
t ) � mva

t−1
→va

t
= max

va
t−1

p(va
t |v

a
t−1)mva

t−2
→va

t−1
msa

t−1
→va

t−1

m5(v
a
t ) � mva

t+1
→va

t
= max

va
t+1

p(va
t+1|v

a
t )mva

t+2
→va

t+1
msa

t+1
→va

t+1

3. Pass messages from source b to a for all t, (messagesm6-m8).
4. Pass messages forward along the grammar chain for source
b, for t = 1..T , and then backward, for t = T..1 (mes-
sages m9-m10). Note that the max-product algorithm also de-
couples the interaction between the acoustic and grammar states
across sources. Naively this complexity would be O(NDN

s DN
v ).

Given the factorized structure of the model, the complexity re-
duces to O(

∑N

k=1 DN−k+1
s Dk

v) ≤ O(NDN+1), where D =
max(Ds, Dv). In the max-product algorithm, the complexity is fur-
ther reduced to O(NDsDv) per iteration (see messages 1, 3, 6, 8).

5. EXPERIMENTS

Table 1 summarizes the error rate of our multi-talker speech recog-
nition system on the SSC task [1], as a function of separation al-
gorithm. In all cases, oracle speaker identities and gains were used
to define the speaker-dependent acoustic models used during sepa-
ration. Recognition was done on the reconstructed target signal us-
ing a conventional single-talker speech recognition system that does
speaker-dependent labeling [2].
For all iterative algorithms, the message passing schedule was exe-
cuted for 10 iterations. After inferring the grammar state sequences,
conditional MMSEs of the sources were reconstructed.
For the max-sum product algorithm, the max operations in the mes-
sages sent between the sources are replaced with sums. The iterative
Viterbi algorithm is equivalent to the max-sum product algorithm,
but with the grammar to acoustic messages bottlenecked to the sin-
gle maximum value.
The max-sum-product algorithm produces nearly the same accuracy
as exact inference. The results obtained using the max-sum product
algorithm are significantly better than those of the max-product al-
gorithm, presumably because this leads to more accurate grammar
state likelihoods. The max-sum product algorithm is an order of
magnitude faster than the exact temporal inference, and still exceeds
the average performance of human listeners on the task. As seen
in Table 2, even for two sources, temporal inference with loopy be-
lief propagation is three times more efficient than joint-Viterbi with
a beam of 400, which yields comparable task error rates. The ap-
proach is promising because temporal inference scales linearly with
language model size, and linearly with the number of sources, mak-
ing it applicable to more complex problems.

Joint Max Iterative Max-Sum
Conditon Humans Viterbi Product Viterbi Product
ST 34.0 33.3 42.0 44.3 39.7 (38.6)
SG 19.5 11.5 12.9 16.4 12.0 (14.4)
DG 11.9 9.9 12.0 13.9 11.1 (10.8)
Overall 22.3 19.0 23.3 25.8 21.9 (22.1)

Table 1. SSC task error rate as a function of separation algorithm
and test condition. Conditions are: same talker (ST), same gender
(SG), different gender (DG). In all cases Algonquin was used to ap-
proximate the acoustic likelihoods. Max interaction results are in
parentheses. Results exceeding human performance are bolded.

Joint Joint Max-Sum
Algorithm Viterbi Viterbi Product
Likelihoods Algonquin Algonquin Algonquin Max
Beam size 20000 400 Full Full
Error Rate 19.0 22.1 21.9 22.1
Relative Operations 10n 3n n n

Table 2. Task error rate and relative number of operations required
for temporal inference as a function of algorithm, likelihood model,
and beam size.
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