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ABSTRACT

Joint uncertainty decoding has recently achieved promising results
by integrating the front-end uncertainty into the back-end in a math-
ematically consistent framework. In this paper, joint uncertainty de-
coding is compared with the widely used vector Taylor series (VTS).
We show that the two methods are identical except that joint un-
certainty decoding applies the Taylor expansion on each regression
class whereas VTS applies it to each HMM mixture. The relatively
rougher expansion points used in joint uncertainty decoding make it
computationally cheaper than VTS but inevitably worse on recog-
nition accuracy. To overcome this drawback, this paper proposes
an improved joint uncertainty decoding algorithm which employs
second-order Taylor expansion on each regression class in order to
reduce the expansion errors. Special considerations are further given
to limit the overall computational cost by adopting different number
of regression classes for different orders in the Taylor expansion. Ex-
periments on the Aurora 2 database show that the proposed method
is able to beat VTS on recognition accuracy and computational cost
with relative improvement up to 6% and 60%, respectively.
Index Terms: speech recognition, noise robustness, VTS, uncer-
tainty decoding

1. INTRODUCTION

Noisy environments significantly degrade the performance of au-
tomatic speech recognition (ASR) systems, in particular when the
acoustic models are trained with clean speech. This relatively low
robustness against environmental noise makes it difficult to deploy
ASR technology in real applications.

One way to tackle this problem is to adapt previously trained
clean speech hidden Markov models (HMM) to the encountered
noisy environment. One of the popular techniques is vector Taylor
series (VTS) [1] [2] which applies linear approximation on the non-
linear noise corruption for each HMM mixture by first-order Tay-
lor series. Although promising results have been achieved [3], the
computational cost of VTS is relatively high since the Taylor series
expansion needs to be calculated for each mixture in the HMM.

Recently, another model adaptation technique, joint uncertainty
decoding (JUD), was introduced [4]. By modelling the relationship
between clean and noisy speech with their joint distribution, this
method adapts the HMM in a mathematically consistent framework.
To make it efficient, the estimation of the joint distribution is nor-
mally simplified by using the first-order Taylor series expansion [5].
With this simplification, JUD has proved to be much faster than VTS
but shows slightly worse recognition accuracy [6].

In this paper, we compare JUD and VTS, and prove that the two
methods are equivalent except that JUD employs fewer - therefore

rougher - Taylor expansion points than VTS. This makes JUD more
flexible and explains why it has less computational cost but cannot
beat VTS on recognition accuracy. In order to further boost the JUD
performance, this paper proposes to employ second order Taylor ex-
pansion on JUD. This is sensible for two reasons. On the one hand,
higher order Taylor expansion provides better approximation than
first order expansion especially when the Taylor expansion points
are rough. On the other hand, although directly applying higher or-
der approximation is computationally prohibitive for VTS, it could
be very efficient for JUD because fewer expansion points are in-
volved in JUD. To further minimise the computational cost, a more
flexible Taylor expansion scheme for JUD is introduced by using
different number of expansion points for different Taylor series or-
ders. On the Aurora 2 task [7], the proposed technique achieves 6%
relative word error rate reduction compared to VTS and has 60%
improvement on computational cost.

The remainder of this paper is as follows: section 2 gives an
overview of VTS and JUD techniques and compares them in a the-
oretical point of view; section 3 introduces JUD with the second
order approximation; in section 4, experimental results on Aurora 2
are presented and conclusions are finally drawn in section 5.

2. VECTOR TAYLOR SERIES AND JOINT UNCERTAINTY
DECODING

2.1. Vector Taylor Series

The effect of additive noise is non-linear in the cepstral domain. For
static features, the relationship is:

y = x + h + g(x,n, h) = x + h + C ln(1 + e
C−1(n−x−h)) (1)

where C denotes the discrete cosine transformation matrix, n, h, x
and y the static features for additive noise, convolutional noise, clean
speech and noisy speech, respectively. Given a Taylor expansion
point (xe, ne, he), the above non-linear relationship can be linearly
approximated by the first-order Taylor series as:

y ≈ xe+he + g(xe, ne, he) + W (x− xe)

+(I −W )g(xe, ne, he)(n− ne) + W (h− he) (2)
W = I +�xg(xe, ne, he)

where I is the identity matrix.
Applying Eq.(2) for each mixture of the HMM, we can adapt

the clean speech HMM to the noisy environment. For the mth mix-
ture, we denote the mean and variance for clean speech with their
static, delta and delta-delta parts as Λm

x = (μm
x ,�μm

x ,��μm
x ) and

Ξm
x = (Σm

x ,�Σm
x ,��Σm

x ), respectively. As shown in [2], such
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an adaptation process takes place by using the static part of the mix-
ture mean and noise mean (μm

x , μn, μh) as the expansion point and
the first-order derivative W becomes mixture-dependent (denoted as
Wm). The adapted static parts μm

y and Σm
y are obtained as

μ
m
y ≈ μm

x + μh + g(μm
x , μn, μh) (3)

Σm
y ≈ WmΣm

x W T
m + (I −Wm)Σn(I −Wm)T (4)

It is reasonable to consider the delta and delta-delta features as
the first and second order derivative of the static features over time
[8]. Thus, we can adapt the dynamic parts:

�μ
m
y ≈ Wm�μm

x (5)
��μ

m
y ≈ Wm��μm

x (6)
�Σm

y ≈ Wm�Σm
x W T

m + (I −Wm)�Σn(I −Wm)T (7)
��Σm

y ≈ Wm��μm
x W T

m + (I −Wm)��Σn(I −Wm)T (8)

2.2. Joint Uncertainty Decoding

In [4], JUD is introduced in a mathematically consistent framework.
Given the full noisy feature Y which includes the static, delta and
delta-delta parts, it calculates the output probability for the mixture
m as follows:

p(Y |m) = |Ar|N(ArY + br; Λ
m
x , Ξm

x + Ξr
b) (9)

Assuming mixture m belongs to the rth regression class, Ar, br

and Ξr
b in Eq.(9) are the JUD transforms related to the same regres-

sion class and defined as follows:

Ar = Ξr
x(Ξr

yx)−1
, br = Λr

x − ArΛ
r
y

Ξr
b = ArΞ

r
yAr

T − Ξr
x

where Λr
x, Ξr

x, Λr
y and Ξr

y are the mean and covariance respectively
for clean and noisy speech in regression class r, and Ξr

yx is the cross-
covariance matrix. The calculation of Ξr

yx turns out to be very costly
and one solution is to use the Taylor expansion in Eq.(1) on it [5].
Ar then becomes

Ar =

0
@

W−1
r 0 0

0 W−1
r 0

0 0 W−1
r

1
A (10)

By applying Eq.(10) and after some mathematical manipula-
tions, Eq.(9) could be reformulated as:

p(Y |m) = N(Y ; Λm
y , Ξm

y ) (11)

This effectively makes JUD a pure model adaptation method
where the noisy HMM parameters are calculated as follows.

μ
m
y =μ

r
x + μh + g(μr

x, μn, μh) + Wr(μ
m
x − μ

r
x) (12)

�μ
m
y =Wr�μ

m
x (13)

��μ
m
y =Wr��μ

m
x (14)

Σm
y =WrΣ

m
x W

T
r + (I −Wr)Σn(I −Wr)

T (15)

�Σm
y =Wr�Σm

x W
T
r + (I −Wr)�Σn(I −Wr)

T (16)

��Σm
y =Wr��Σm

x W
T
r + (I −Wr)��Σn(I −Wr)

T (17)

Comparing Eq.(12)-(17) with Eq.(3)-(8), it is obvious that the
only difference between JUD and VTS is the selection of the Tay-
lor expansion point. Instead of using the mean of each mixture μm

x ,

JUD applies the expansion over the mean of the regression class μr
x.

In another word, VTS is a special case of JUD where the number of
regression classes equals to the number of mixtures i.e. μr

x = μm
x .

This has two effects on the performance. First, since the number of
regression classes is normally smaller than the number of mixtures,
JUD involves much fewer number of derivatives W in the Taylor ex-
pansion and therefore is advantageous on computational cost. Sec-
ond, the expansion point μr

x is rougher than the μm
x , i.e. statistically

farther to the value of real clean speech x. The rougher the expan-
sion point, the larger the Taylor approximation error will be. Thus,
JUD is expected to achieve worse recognition accuracy than VTS.

3. JOINT UNCERTAINTY DECODINGWITH SECOND
ORDER APPROXIMATION

It is generally believed [9] that the higher order Taylor expansion
could reduce the Taylor approximation errors, especially when the
expansion point is rough. For JUD, this is expected to be helpful for
improving the recognition accuracy.

3.1. Second Order Approximation

Given the expansion point (μr
x, μn, μh), the second order Taylor

expansion on the feature vector is as follows

y =μ
r
x + μh + g(μr

x, μn, μh) + Wr(x− μ
r
x)

+
1

2
Krdiag{(x− μ

r
x)(x− μ

r
x)T + (n− μn)(n− μn)T

−(x− μ
r
x)(n− μn)T − (n− μ

r
n)(x− μx)T } (18)

where diag{.} outputs the diagonal of the given matrix as a vector
and diag−1{.} expands a vector into a diagonal matrix. The second
order derivative Kr is calculated as

Kr =�xx g(μr
x, μn, μh)

=Cdiag
−1{

eC−1(μn−μr

x
−μh)

[1 + eC−1(μn−μr
x
−μh)]2

}C−1
C
−1

Taking the mean value on both sides of Eq.(18), the new JUD
formulae for HMM mean adaptation are obtained as

μ
m
y =μ

r
x + μh + g(μr

x, μn, μh) + Wr(μ
m
x − μ

r
x) + Krd

m

(19)
�μ

m
y =Wr�μ

m
x + Krd

m
� (20)

��μ
m
y =Wr��μ

m
x + Krd

m
�� (21)

In the formulae above, dm, dm
� and dm

�� are vectors depending
on each mixture

d
m =

1

2
diag{[Σm

x + Σn + (μm
x − μ

r
x)(μm

x − μ
r
x)T ]}

d
m
� =diag{(μm

x − μ
r
x)�μ

m
x

T }

d
m
�� =diag{(μm

x − μ
r
x)��μ

m
x

T +�Σm
x +�Σn +�μ

m
x �μ

m
x

T }

Although a new formula for HMM variance adaptation can also
be acquired with Eq.(18), this paper keeps using the first order ap-
proximation in Eq.(15)-Eq.(17) on variance parts both for simplicity
and to minimise the extra computational cost involved. Applying
Eq.(19)-(21) to Eq.(11), JUD with second-order approximation can
be written in a form similar to Eq.(9):

p(Y |m) = |Ar|N(ArY + br; Λ
m
x + Λm

b , Ξm
x + Ξr

b) (22)
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where we can observe that

Λm
b =

0
@

W−1
r Krd

m

W−1
r Krd

m
�

W−1
r Krd

m
��

1
A (23)

is the only difference between Eq.(22) and Eq.(9).
Clearly, JUD with second-order approximation has several ad-

vantages over VTS. First, since the second order Taylor expansion is
applied, the JUD performance can be as good as the computationally
prohibitive second-order VTS. In other words, the new JUD is able
to beat the commonly used first-order VTS on recognition accuracy,
which is almost impossible for the original JUD. Second, although
the new JUD formula does introduce extra computational cost on
the calculation of Λm

b per mixture, its overall cost is however still
expected to be far less than VTS because the most costly parts, the
computation of the Wr and Kr , are only for each regression class.
Therefore it is expected that JUD with the second order approxi-
mation could beat VTS both on computational cost and recognition
accuracy.

3.2. Further Simplification

The g vector and the Wr and Kr matrices are most costly in the
second-order approximation. Therefore, reducing the overall num-
ber of these matrices and vectors should be helpful for further im-
proving the efficiency. Based on the theory of Taylor expansion, the
lower order terms in the Taylor series are more important than the
higher order ones. Specifically, g is most important for the Taylor
expansion, Wr is less important whereas Kr is least important. This
means a slightly less accurate Kr will not result in significant perfor-
mance change. Thus it is reasonable to employ different number of
regression classes for different orders, more for the lower orders and
fewer for the higher orders. In this paper we adopted the same num-
ber of regression classes for g and Wr and uses a different number
of classes for Kr .

In addition, we observed in the experiments that applying the
second-order approximation for JUD on the delta-delta feature part
brings almost no improvement compared to the static and delta parts.
Considering the computational cost, this paper only applies the sec-
ond order JUD on the static and delta parts and keeps using the first
order JUD for the delta-delta part.

4. EXPERIMENTS

Experiments were conducted on the Aurora 2 database [7] of con-
nected digits. The database is divided into two training sets (clean
and multi-condition) and three noisy testing sets. Test set A and B
respectively include four types of additive noise with SNR ranging
from 20 to 0 dB while set C also contains convolutional noise. In
this paper, we used the clean training set to train the models and
only test set A and B for the recognition test. Recognition was per-
formed with HTK [10]. Each digit was modelled by 16 HMM states
with three mixtures whereas the silence was modelled by 3 states
each with 6 mixtures - 546 mixtures in all. The front-end was a 13-
dimensional MFCC including the zeroth coefficient with their delta
and delta-delta components.

The recognition process was implemented in a two pass mode
similar to [3]. Specifically,

1. the initial noise parameters μn, Σn and μh as well as their
delta and delta-delta terms were estimated from the first and
last 20 frames in each utterance

 9

 10

 11

 12

 13

 14

 15

 16

256128643216842

W
ER

 (%
)

Number of regression classes

VTS
2nd VTS
1st JUD

2nd JUD
2nd JUD-TIE2

Fig. 1. Averaged WER on Set A with different number of regression
classes

#Reg VTS 2nd

VTS
1st

JUD
2nd

JUD
2nd

JUD-
TIE2

8 546/546 1092/546 8/8 16/8 10/8
16 546/546 1092/546 16/16 32/16 18/16
32 546/546 1092/546 32/32 64/32 34/32

Table 2. Total number of transforms (#W +#K / #g) involved in the
VTS/JUD with 8, 16 or 32 regression classes

2. first-order VTS was then applied to adapt the HMM in order
to generate an initial recognition hypothesis

3. an Expectation-Maximisation based VTS noise estimation
process [6] was adopted to refine the noise parameters based
on the initial hypothesis

4. the refined noise parameters are finally fed into VTS or JUD
to compensate the HMM and obtain the final recognition re-
sults

With the same noise estimation in step 4, figure 1 gives the aver-
age word error rate (WER) on set A for VTS and JUD with different
number of regression classes for Taylor expansion. For VTS, re-
sults for both the first and second order are provided. For JUD, we
also provide the results of a simplified version (denoted as 2nd JUD-
TIE2) for the second-order approximation which, as introduced in
section 3.2, uses only 2 regression classes for the Kr calculation.
With the number of regression classes increasing, it is observed that
the performance of JUD with 1st-order approximation gets closer
and closer to the first order VTS. By applying the second order
Taylor expansion, JUD, either simplified or not, improves the per-
formance consistently. The performance becomes significantly bet-
ter than the first-order VTS when the number of regression classes
is larger than 16. Although not aimed at reducing the WER, the
simplified version does achieve a better performance than the non-
simplified version on the Aurora 2. The more detailed results shown
in table 1 indicate that the simplified 2nd-order JUD, even with 32
regression classes, brings 6.1% relative improvement on WER for
set A and 5.6% for set B than VTS. Such an improvement is also
consistent across all the noise types.

Table 2 shows the number of transforms i.e. K and W matrices
involved in each method. The computational costs for VTS and JUD
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Set A Set B
#Reg Class Method Subway Babble Car Exhibition Ave. Restaurant Street Airport Station Ave.

- Baseline 35.92 52.34 46.60 40.30 43.79 49.27 41.21 47.86 47.97 46.58
- VTS 10.76 11.68 7.39 9.48 9.83 10.79 9.82 7.60 8.03 9.06
- 2nd VTS 10.22 10.98 7.25 9.29 9.44 10.14 9.44 7.29 7.70 8.64

1st JUD 12.28 13.28 9.04 10.99 11.38 11.70 11.42 8.68 9.26 10.27
2nd JUD 11.51 11.28 8.44 11.38 10.65 10.57 10.58 7.76 8.47 9.358

2nd JUD-TIE2 10.59 10.90 8.76 11.14 10.35 10.08 10.42 7.64 8.41 9.14
1st JUD 11.02 11.73 7.85 10.16 10.19 10.99 10.31 7.64 8.29 9.31
2nd JUD 10.47 10.77 7.67 10.10 9.75 10.19 9.86 7.31 7.86 8.8116

2nd JUD-TIE2 9.74 10.48 7.42 9.48 9.28 9.85 9.49 7.09 7.56 8.50
1st JUD 10.82 11.47 7.43 9.38 9.78 10.76 9.90 7.53 8.04 9.06
2nd JUD 10.24 10.68 7.41 9.44 9.44 9.97 9.63 7.17 7.70 8.6232

2nd JUD-TIE2 9.86 10.61 7.36 9.11 9.23 9.93 9.48 7.11 7.69 8.55

Table 1. WER (%) averaged over each noise type for different methods with 8, 16 or 32 regression classes
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Fig. 2. Computational cost with different number of regression
classes

are shown in figure 2 where the number of CPU instructions is mea-
sured over one utterance. The JUD-based methods have very lim-
ited number of transforms compared to VTS and therefore far less
computational cost. Compared to the original JUD, the 2nd-order
approximation on JUD does introduce extra computational cost but
it is still much faster than first and second-order VTS. Such an extra
computational cost can be largely reduced by using the simplified
2nd-order approximation. Given the 6% WER improvement with 32
regression classes on set A, JUD with simplified 2nd-order approxi-
mation is about 60% faster than the first-order VTS.

5. CONCLUSIONS

This paper investigates two popular model-based noise robustness
methods, namely VTS and JUD. It is observed that JUD is the same
as VTS except that JUD is using a rougher expansion point during
the Taylor expansion. Due to this reason, JUD cannot beat VTS
on the recognition accuracy although it can be much faster. The
second-order approximation on JUD is then introduced by virtue of
the second-order Taylor expansion, which makes it possible for JUD
to beat VTS also on recognition accuracy. To further reduce the
overall computational cost, the second-order approximation on JUD

is simplified where the derivatives in the Taylor expansion use differ-
ent number of expansion points in terms of their orders. Compared
with VTS, the proposed method achieves up to 6% improvement in
recognition accuracy and 60% reduction for the computational cost
on the Aurora 2 task, indicating it can be a good replacement for the
widely used VTS.
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