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ABSTRACT

Model compensation schemes are a powerful approach to handling
mismatches between training and testing conditions. Normally these
schemes are run in a batch adaptation mode, re-recognising the ut-
terance used to estimate the noise model parameters. For many ap-
plications this introduces unacceptable latency. This paper exam-
ines three forms of incremental mode model-based compensation:
vector Taylor series; joint uncertainty decoding; and predictive CM-
LLR. These predictive schemes can also be combined with adap-
tive schemes such as CMLLR. By combining the approaches, weak-
nesses of each can be addressed. The performance is evaluated on
in-car recorded data, where the combined incremental scheme shows
gains over either individually.
Index Terms: noise robustness, speaker adaptation

1. INTRODUCTION

Speech recognition in noise has been an area of active research for
many years. Good performance using model-based compensation
schemes, such as vector Taylor series (VTS) [1] and joint uncertainty
decoding (JUD) [2], can be obtained. These predictive approaches
make use of a mismatch function that represents the impact of the
background noise on the clean speech. The number of parameters
associated with this mismatch function is usually small, the additive
noise distribution and an estimate of the convolutional distortion.
This is in contrast to adaptive approaches to speaker and noise com-
pensation where, normally, linear transforms of the model parame-
ters are estimated. These adaptive approaches make no assumptions
about the underlying nature of the mismatch. For non-linear mis-
matches, such as the impact of noise in the mel-cepstral domain, a
large number of transforms and associated parameters must be esti-
mated.

Adaptation is normally run in either a batch or incremental
mode. In incremental mode adaptation the data is assumed to ar-
rive in a causal fashion and hypotheses also generated in a causal
fashion. For batch adaptation all data to be decoded is available
in a single block. Recognition and adaptation can be run repeat-
edly on the same block before the final output is generated. Model
noise compensation is often only described in a batch adaptation,
though sometimes the size of the batch may be a single utterance. In
some application areas, such is in-car embedded speech recognition,
batch mode adaptation would cause too great a latency to be useful.
Though the modifications to the theory required for incremental pre-
dictive adaptation are small, basically the statistics are accumulated
in an incremental fashion, incremental adaptation allows interest-
ing contrasts and combinations of predictive and adaptive schemes
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to be used. In this work an approach for combining adaptive and
predictive noise compensation schemes is described. By combining
the two schemes weaknesses of both the schemes for noise robust
speech recognition are addressed: rapidness and accuracy for adap-
tive schemes; accuracy of the mismatch function and speaker mod-
elling for the predictive schemes.

2. ADAPTIVE COMPENSATION

Adaptation is commonly used to compensate for different speakers
and noise conditions. The most popular forms of rapid adaptation are
based on linear transforms, for example maximum likelihood linear
regression (MLLR) [3] and constrained MLLR (CMLLR) [4]. CM-
LLR is often used as for large systems it is computationally efficient
as it can be implemented as a (set of) linear transform of the features.
The general form of the transform is
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where μ(m)
x and Σ

(m)
x are the mean and covariance matrix of com-

ponent sm of the clean system1. In this expression the component
is assumed to belong to regression class r. By using multiple re-
gression classes it is possible to handle non-linear transformations.
This is important when used to compensate for noise as the impact
of noise on the clean speech is highly non-linear, see equation 6.

The transform parameters are normally estimated in a maximum
likelihood (ML) fashion. In this work the majority of the transforms
considered are diagonal as when adapting clean models more diag-
onal transforms provide better results than a limited number of full
transforms. This is not the case for standard speaker adaptation [5] or
when adapting multi-style models. For the diagonal case the trans-
form can be estimated non-iteratively using [4]
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1In this work a distinction will be made between the parameters of a
“clean” model, for example μ

(m)
x , and the parameters associated with (or

modified to reflect) the noise corrupted models,for example μ
(m)
y .
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γ
(m)
y (t) is the posterior probability that component sm generated
the observation y

t
at time t given the complete observation sequence

Y = {y1, . . . , yT
}. For incremental adaptation, the current trans-

form is used to recognize the next utterance. Statistics are then ac-
cumulated for this recently decoded utterance and a new transform
estimated.

3. PREDICTIVE NOISE COMPENSATION

The previous section has described CMLLR, which in this work will
be referred to as an adaptive transform. This section will describe
predictive transforms. In predictive transforms the relationship be-
tween the clean and corrupted speech distributions can be parame-
terised by a mismatch function and underlying noise models. For
noise robust speech recognition, the standard form of static mis-
match function in the mel-cepstral domain will be used
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where C is the DCT matrix. The complete features used in this
work and many other systems is then yT
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the noise model parameters, the noise mean and covariance matrix
μn, Σn, and the convolutional noise μh, are known it is possible
to transform the model parameters, or obtain transformations of the
features. In practice these values are seldom known in advance so
must be estimated from the test data. All these parameters can be
estimated using Maximum Likelihood (ML) noise estimation [6]. In
this work the parameters are estimated in an incremental fashion,
rather than the standard batch mode in [6].

3.1. VTS

Vector Taylor series model-based compensation is a popular ap-
proach for model-based compensation [1, 6, 7]. There are a number
of possible forms that have been examined. In this work the first-
order VTS scheme described in [6] is used. A brief summary of the
scheme is given here. The static mean, μs

y , and covariance matrix,
Σs

y , of the corrupted speech distribution are given by [7]2
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where matrix J above is the partial derivative, ∂ys/∂xs, evaluated
at μs = μs

n − μs

x − μh. This may be expressed as
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where F is a diagonal matrix with elements given by 1/(1 +
exp(2C-1(μs)). For best performance all the model parameters
need to be estimated . To obtain the expression for the compensated
dynamic parameters (Δ, Δ2) the continuous time approximation is
used in this work providing
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where μΔ2

y andΣΔ2

y have similar form. As each component is com-
pensated separately the likelihood calculation involves
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2The dependence on the noise corrupted speech mean and clean speech
mean on the component have been dropped for clarity.

3.2. Joint Uncertainty Decoding

Though VTS has been shown to yield large reductions in word error
rate (WER) the scheme is computationally expensive as each com-
ponent is compensated individually. To reduce the computational
load joint uncertainty decoding [2, 6] has been proposed. Here com-
pensation parameters are computed at the regression base-class level.
The approximate joint Gaussian distribution of the corrupted speech,
y and the clean speech x is computed for the regression class. This
can then be used in an uncertainty decoding frame work to yield
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where {A(r)
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(r)
jud,Σ

(r)
jud} are computed from the joint distribution.

In this work diagonal versions ofA(r)
jud andΣ

(r)
jud are used.

The computational advantage of JUD is that a VTS-like opera-
tion is only required at the regression class level. The compensation
parameters are then relatively cheap to apply to the model-set. There
is a linear transform of the features, similar to CMLLR, and a simple
bias on the component variance.

3.3. Predictive CMLLR

Though JUD is significantly faster than VTS, the computational cost
of applying the transform is still a function of the number of com-
ponents in the recognition system as the additive bias must be ap-
plied. To address this problem predictive CMLLR (PCMLLR) has
been proposed [8]. Here a CMLLR-style transform is computed, but
rather than using observations, the mismatch function is used to de-
rive pseudo statistics to estimate the transform. Thus the decoding
expression is

p(y
t
|sm) = |A(r)

pc |N (A(r)
pc y

t
+ b

(r)
pc ; μ(m)

x ,Σ(m)
x ), (13)

The difference to CMLLR is that equations 4 and 5 are now ex-
pressed in terms of (only diagonal transforms used in this work)
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where the component “occupancies”, γ(m)
x , are derived from the oc-

cupancy counts in the training data. In [8] the statistics used to de-
rive PCMLLR was obtained using stereo data and applying SPR to
clean models. If noise estimates are available though, statistics can
be obtained from either the VTS or JUD predictive compensation
schemes (other forms of model compensation can also be used). If
VTS is used then the expectations are simple to derive as, for exam-
ple E{yti|sm} = μ

(m)
yi . Though this yields simple expressions, the

scheme is no more computationally efficient than VTS.
A more efficient form can be derived using JUD. The expecta-

tion of yi for a particular component sm can be expressed as
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The terms in brackets are only functions of the clean model param-
eters. These can be accumulated and cached once for the system,
making this form of compensation highly efficient both in terms of
transform estimation and run-time decoding. This form of efficient
PCMLLR JUD-based estimation is used in this paper.

4. PREDICTIVE AND ADAPTIVE COMPENSATION

In many ways the adaptive and predictive schemes described in the
previous two sections are complementary to one another. Adaptive
schemes are applicable to a range of tasks, for example speaker adap-
tation and noise compensation, but require sufficient adaptation data
to obtain robust parameter estimates. In contrast predictive schemes
are specifically aimed at noise robust speech recognition. How-
ever they only require a small amount of adaptation data as, com-
pared to adaptive schemes, they have very few parameters to be es-
timated. An additional problem with predictive schemes is the mis-
match function must be specified. Inaccuracies and approximations
in deriving the mismatch function will impact performance.

Combining the two approaches allows some of the weakness of
each to be reduced. For small amounts of data predictive schemes
can act as a good “prior” for adaptive schemes. Whereas as the
amount of data increases the approximations in the mismatch func-
tions and lack of adaptation to the speaker from predictive schemes
can be addressed using the adaptive transforms. The use of priors for
MLLR transforms is common [9]. However for CMLLR a conjugate
prior, even for the complete data-set, is not possible. Instead count
smoothing will be used (this is also simple to apply for MLLR).
Here the pseudo counts associated with the predictive transform are
combined with the actual observed counts, the transform is then es-
timated.

Take the example of combining PCMLLR with CMLLR. The
observed counts G(r)

i
and k
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from equations 4, 5 and normalised

pseudo-counts from equations 14, 15 are combined to yield
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reason for normalising the pseudo-counts is that it makes their con-
tribution independent of the size of the training data and the smooth-
ing term, τsm will be related to the minimum transform occupancies
normally used to obtain robust transform estimates. The estimated
transform is then used in the same fashion as CMLLR in equation 1.

It is possible to combine CMLLR with other forms of predictive
scheme. For VTS compensation with CMLLR the decoding would
then have the form
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get the smoothed pseudo counts for this form of transform, the ex-
pressions in equations 14 and 15 must be modified. The combined
transform acts on the VTS compensated model parameters. Thus the
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Similar forms can be obtained forG(r)
pci
andG

(r)
i
. From this form it

is clear that when τsm = 0 the resulting transform will be an identity
matrix, as expected. Similar forms of expression can be obtained
combining JUD with CMLLR.

5. RESULTS

The proposed schemes were evaluated in an incremental mode on
a task with real recorded noise: the Toshiba in-car database. This
is a corpus collected by Toshiba Research Europe Limited’s Cam-
bridge Research Laboratory. It is a small/medium sized task with
noisy speech collected in the office and in vehicles driving at various
conditions. This work uses a subset of three of test sets3 containing
digit sequences (phone numbers) recorded in a car with a micro-
phone mounted on the rear-view mirror. Though the task is artificial
it is in-car recorded data, so allows an initial investigation of these
predictive and adaptive transforms. The ENON set is recorded with
the engine idle, and has a 35 dB average SNR. The CITY set, is
recorded driving in cities, and has a 25 dB average SNR. The HWY
set is recorded on the highway, and has a 18 dB average SNR. The
test set comprises 20,19 and 20 speakers respectively, each speaker
uttering 30 digit sequences.

The speech recogniser was trained on clean data from the Wall
Street Journal corpus. The feature vector dimension is 39 consist-
ing of 12 MFCCs appended with the zeroth cepstrum, and delta and
delta-delta coefficients were used. The total number of decision tree
clustered states was about 650 with 12 Gaussian components with di-
agonal covariance matrices each. Cross-word triphones models were
obtained with three emitting states per HMM. This system is more
compact than the usual form of system built on the WSJ data, but
is felt to be more realistic for an embedded application. For JUD,
CMLLR, PCMLLR and the combined schemes a regression class
tree with 64 classes was used. Thus the number regression classes is
approximated a hundredth the number of components in the system.
For the standard CMLLR experiments a regression class tree with the
same base-classes was used. The minimum occupancy settings were
tuned separately for the diagonal (100 frames) and the full (1000
frames). In addition to this clean system a multi-style trained system
was built with car noise added at various SNRs. See [10] for more
details of the training configuration. For all the predictive schemes,
the initial noise model for the first utterance of each sequence was
obtained using the first and last 20 frames of the utterance itself.
This was then re-estimated for every subsequent utterance using the
ML VTS-based scheme described in [6]. Though VTS is used in the
noise estimation only a subset of the components (those with non-
zero counts) need to be compensated. JUD based noise estimation
schemes can be used [10], which allow the computational cost of
the noise estimation to be reduced. Table 1 summarises the results
obtained for the proposed predictive and adaptive schemes on the
three test sets. The performance of the diagonal CMLLR adaptation

3Only speakers where all utterance were in the test set were used. This
is more appropriate for this incremental mode - avoiding large gaps between
utterances.
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System Condition WER (%)
ENON CITY HWY

Clean 2.91 32.93 66.30
-CMLLR 0.60 7.57 40.62
-CMLLR (full) 0.75 30.27 68.14
-VTS 1.22 3.06 4.11
-JUD 1.10 2.86 5.42
-PCMLLR 1.21 2.93 6.14
MST 2.50 7.59 27.38
-CMLLR 1.40 4.79 8.39
-CMLLR (full) 1.01 4.59 6.41

Table 1. Incremental results on using CMLLR, VTS, JUD and
PCMLLR performance on Clean system; diagonal and full CMLLR
performance on Multi-style trained (MST) system.

with the clean system was disappointing (though better than the full
CMLLR performance which yielded no improvement) on the lower
SNR conditions. This is partly because of the large mismatch be-
tween the training and test conditions. All the predictive schemes
out-performed the adaptive CMLLR approach. The trend was ex-
pected, where VTS performed best at the lowest SNR condition,
HWY. The difference between VTS and the approximations, JUD
and PCMLLR, was very small for the two higher SNR conditions,
ENON and CITY. Though the multi-style trained system gave gains
over the clean system, and full CMLLR out-performed the diagonal
case, the performance was worse than the predictive schemes for the
lower SNR conditions.
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Fig. 1. Result of combined PCMLLR+CMLLR, JUD+CMLLR and
VTS+CMLLR schemes varying the smoothing factor τsm on the
HWY test set.

The impact of the smoothing factor on the performance on the
predictive and adaptive smoothing scheme for the HWY test set is
shown in figure 1. When τsm = 0 the performance is the same as
that in table 1. Gains are obtained for the range of smoothing factors
from τsm = 0.01 to τsm = 0.05.

The results for all three tasks using τsm = 0.03 are summa-
rized in table 2. For all tasks large gains over either the pure pre-
dictive, or pure adaptive schemes can be observed. Even at the
highest SNR condition, ENON, the combined scheme outperformed
the best adaptive scheme, clean plus CMLLR. Another aspect of the
combined scheme is that the differences between the various predic-
tive approaches is reduced. This is expected, partly because of the

System Condition WER (%)
ENON CITY HWY

VTS 1.22 3.06 4.11
+CMLLR 0.51 2.67 3.38
JUD 1.10 2.86 5.42
+CMLLR 0.50 2.30 3.59
PCMLLR 1.21 2.93 6.14
+CMLLR 0.50 2.30 3.65

Table 2. Combined predictive and adaptive compensation on the
Toshiba in-car data using the clean system and τsm = 0.03.

number of utterances for each speaker, but also the adaptive scheme
will reduce the impact of the approximations in the faster predic-
tive schemes. It is interesting that PCMLLR+CMLLR, a scheme
that can be made highly efficient achieves good performance over all
three tasks.

6. CONCLUSIONS

This paper has discussed the use of incremental model compensation
using both predictive schemes, such as VTS and JUD, and adaptive
schemes such as CMLLR. In addition the use of incremental pre-
dictive CMLLR is discussed. By using statistics derived from JUD
compensation, the estimation of PCMLLR parameters can be made
efficient, both in terms of estimation and application. Moreover by
combining predictive and adaptive schemes together it is possible to
obtain gains over either individually on an in-car recorded task.
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