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ABSTRACT

Model compensation is a standard way of improving speech recog-
nisers’ robustness to noise. Currently popular schemes are based on
vector Taylor series (VTS) compensation. They often use the contin-
uous time approximation to compensate dynamic parameters. In this
paper, the accuracy of dynamic parameter compensation is improved
by representing the dynamic features as a linear transformation of a
window of static features. A modified version of VTS compensation
is applied to the distribution of the window of static features and,
importantly, their correlations. These compensated distributions are
then transformed to standard static and dynamic distributions. The
proposed scheme outperformed the standard VTS scheme by about
10 % relative.

Index Terms— Speech recognition, acoustic noise, robustness

1. INTRODUCTION

Robustly handling changes in the background noise conditions is a
major problem for speech recognition systems. Common approaches
are to use either feature enhancement or model compensation tech-
niques. The latter have been found to yield good results, particularly
in conditions with low signal-to-noise ratios, and will be the focus of
this paper. To achieve the best possible performance, model compen-
sation schemes need to compensate the static as well as the dynamic
parameters that are commonly used in HMM-based speech recogni-
tion systems. This paper describes a new approach for compensating
the dynamic model parameters.

The first stage in developing a noise compensation scheme is to
express how the noise conditions impact the “clean” speech. When
cepstral-based parameters are used, the mismatch function between
clean and noise-corrupted speech is non-linear. This non-linearity
makes computing the exact distribution of the noise-corrupted
speech intractable. A commonly used method that has yielded
good results approximates the mismatch function with a first-order
vector Taylor series (VTS) expansion. The mismatch function is
simple to define for the static parameters. However, in HMM-based
speech recognition systems dynamic features, for example delta
and delta-delta coefficients, are appended to the static features to
form the feature vector. The standard approach to compensate the
associated dynamic parameters is to use the continuous time approx-
imation [1]. It assumes that the dynamic coefficients are the time
derivatives of the statics. The form of compensation for the dynamic
parameters is then closely related to the static parameters.

In previous work the limitations of the continuous time approx-
imation were highlighted and a modified version of data-driven par-
allel model combination (DPMC) proposed to improve the dynamic
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parameter compensation [2]. The dynamic coefficients can be ex-
pressed as a linear transformation over a window of static feature
coefficients. The distribution over this “extended” feature vector is
then computed. By linearly transforming the parameters of the distri-
bution over the extended feature vector, the distribution of the static
and dynamic parameters can be found. Though yielding reductions
in word error rate, this form of compensation is highly inefficient
as it uses many samples per distribution. In this paper, the distri-
butions over extended feature vectors are computed by an extended
version of VTS. This approach will be referred to as extended VTS.
An important modification to the standard VTS approach is the com-
pensation of the inter-frame correlations. Extended VTS implements
the improved dynamic parameter parameter compensation more ef-
ficiently than extended DPMC.

2. MODEL COMPENSATION

The additive noise n and the convolutional noise h transform the
clean speech x, resulting in noise-corrupted speech y. In the Mel-
cepstral domain (i.e. for MFCCs) the mismatch between clean speech
statics xs

t and the noise-corrupted speech statics ys
t at time t is ex-

pressed by

ys
t = xs

t + hs
t + C log

`
1 + exp

`
C−1 (ns

t − xs
t − hs

t)
´´

= f (xs
t, n

s
t, h

s
t) , (1)

where C is the DCT matrix. It is standard practice in speech recog-
nition to append dynamic features to the observation vector. They
represent the change of the signal over time. Both first- and second-

order coefficients (yΔ
t , yΔ2

t respectively) are normally used. Thus

the observation feature vector is yt = [ ysT
t yΔT

t yΔ2T
t ]T. For

clarity of presentation only first-order, delta, coefficients yΔ will be
shown.

Model compensation alters the speech recogniser parameters so
they model the corrupted speech distribution. Each component in the
clean speech model is usually handled separately. If the corrupted
speech is distributed asN (μy,Σy), then

μy = E {y} ; Σy = diag
“
E
n

(y − μy)(y − μy)T
o”

. (2)

where the expectations are over the distribution of a component of
the clean speech model and the noise distribution. The speech and
noise are combined using (1). There is no closed form for (2), so
various approximations are used. The next sections briefly discuss
two options, VTS and DPMC.

Prior to performing model compensation, the noise distributions
are required. In this work, the noise model gives the distributions of
n and h. n (including the dynamic parameters) is assumed Gaussian
with mean μn and covariance Σn; h = μh is assumed constant
[3]. These distributions can be estimated using maximum-likelihood
estimation and some data from the testing noise condition [4].
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2.1. Vector Taylor series

Equation (1) can be approximated with a first-order vector Taylor se-
ries (VTS) [3]. Evaluating the partial derivatives of f at μs

n, μs
x, μs

h,
(1) becomes

ys
t ≈ f (μs

x, μs
n, μs

h) + Jx(xs
t − μs

x) + Jn(ns
t − μs

n), (3)

with

Jx =
∂ys

∂xs
; Jn =

∂ys

∂ns
. (4)

The corrupted static mean and covariance become [5]

μs
y = f (μs

x, μs
n, μs

h) ; (5a)

Σs
y = diag

“
JxΣ

s
xJ

T
x + JnΣs

nJT
n

”
. (5b)

To compensate dynamic parameters, the continuous time ap-
proximation [1] is often used in conjunction with VTS. This ap-
proximation assumes that delta coefficients are derivatives of static
coefficients with respect to time t, so that (for window width w)

yΔ
t =

Pw
τ=1 τ(ys

t+τ − ys
t−τ )

2
Pw

τ=1 τ2
≈ ∂ys

∂t

˛̨
˛̨
t

; (6)

μΔ
y = JxμΔ

x ; ΣΔ
y = diag

“
JxΣ

Δ
x JT

x + JnΣΔ
n JT

n

”
. (7)

2.2. Data-driven parallel model combination

Data-driven parallel model combination [6] (DPMC) is a Monte Carlo
method for estimating the distribution of the corrupted speech. Sam-
ples are drawn from the distributions of xs and ns. (1) then gives
the value of ys for each sample. The expectations in (2) are esti-
mated using the samples of ys. A scheme that compensates dynamic
coefficients computed with simple differences is possible.

In the limit as the number of samples goes to infinity, DPMC

yields an accurate distribution for the noise-corrupted speech given
the mismatch function and the speech and noise distributions, and
could be viewed as an infinite-order VTS. However, as a large num-
ber of samples are necessary to train the noise-corrupted speech dis-
tributions, the computational cost is much greater than for VTS.

3. EXTENDED VTS

The continuous time approximation does not yield accurate compen-
sation. In some cases, performance decreases when it is used [7].
This work uses an alternative method, the key intuition to which is
the following. Since dynamic coefficients are a linear combination of
consecutive static feature vectors, a distribution over dynamic coef-
ficients can be computed from a distribution over a window of static
feature vectors.

For exposition, assume a window of ±1 and only first-order dy-
namic coefficients. An extended feature vector ye

t , containing the
static feature vectors in the surrounding window, is given by ye

t =
[ ys

t−1
T ys

t
T ys

t+1
T ]T.1 The transformation of the extended feature

vector ye
t to a feature vector with static and dynamic parameters yt

can be expressed as a linear projection D:
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1It is straightforward to extend this to handle both second-order dynamics
and linear-regression coefficients over a larger window of ±w, so that ye

t =

[ys
t−w

T . . . ys
t+w

T]T.

Since D is a linear transformation, from the extended distribution
N `

μe
y,Σe

y

´
the mean and covariance of the corrupted speech dis-

tribution for y are

μy = Dμe
y; Σy = DΣe

yD
T. (9)

The distribution of ye ∼ N `
μe

y,Σe
y

´
depends on the dis-

tributions over extended feature vectors of clean speech xe ∼
N (μe

x,Σe
x) and additive noise ne ∼ N (μe

n,Σe
n).

It is interesting to look at the structure of these extended dis-
tributions. The mean μe

y of the concatenation of consecutive static
feature vectors is simply a concatenation of consecutive static means.
The covariance Σe

y , however, has a structure with blocks giving the
cross-covariances between static feature vectors for different time
instances:

μe
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2
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μs
yt
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3
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3
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(10)

As can be seen from (9), linear combinations of the blocks in the ma-
trix Σe

y form the covariance matrix over normal feature vectors Σy .
Therefore, for speech the cross-correlations between time instances
cannot be assumed zero. Because the speech model switches be-
tween components, the distributions of the speech at different time
instances for one component are not the same.

Since the extended feature vector is a concatenation of static fea-
ture vectors, it is possible to compensate each time instance sepa-
rately to find a distribution over ye. This requires distributions over
extended feature vectors for the clean speech xe and additive noise
ne, with parameters similar to (10). How to find these will be dis-
cussed below.

Extended VTS applies the first-order approximation in (3) to
each time instance separately. The expansion point is given by the
static means at the appropriate time instances, from the distributions
over xe and ne. The VTS approximation for time instance t + 1 is

ys
t+1 ≈ f

`
μs

xt+1 , μs
nt+1 , μs

h

´
+ Jxt+1(x

s
t+1 − μs

xt+1) + Jnt+1(n
s
t+1 − μs

nt+1), (11)

with the Jacobians

Jxt+1 =
∂ys

t+1

∂xs
t+1

; Jnt+1 =
∂ys

t+1

∂ns
t+1

. (12)

The mean for that time instance is then given by

μs
yt+1 = f

`
μs

xt+1 , μs
nt+1 , μs

h

´
. (13)

The covariance matrix Σe
y contains the correlations between all time

instances in the window. For example, the covariance between time
instance t and t + 1 is found by generalising (5b) to

Σs
ytyt+1 = JxtΣ

s
xtxt+1J

T
xt+1 + JntΣ

s
ntnt+1J

T
nt+1 . (14)

This is applied for each block of (10). The computational cost is
dominated by the calculation of the Jacobians, which are computed
for each time instance, compared to just once for standard VTS.

A Monte Carlo approach to finding the extended noise-corrupted
speech distribution, extended DPMC, has been introduced earlier [2].
Extended DPMC is based on DPMC as described in section 2.2, but
it draws extended samples xe and ne from the distributions of the
clean speech and additive noise. It then applies the mismatch func-
tion to each time instance to yield a sample for ye

t . μe
y and Σe

y are
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estimated directly on these samples. This procedure is slow, but gen-
erates accurate compensation as the number of samples goes to in-
finity. This paper uses extended DPMC as a reference compensation
method.

A practical issue needs to be considered when using compensa-
tion with extended feature vectors: the nature of the statistics for the
clean speech and the noise.

For the clean speech, full covariance matrices for Σe
x can be

stored and used. However, if both first- and second-order dynamic
parameters use window widths of ±2 and there are d static param-
eters, this requires estimating a 9d × 9d covariance matrix for ev-
ery component. This is memory-intensive, and with large numbers
of Gaussian components, singular matrices and numerical accuracy
problems can occur. One approach to handling this problem is to use
“striped” statistics: for each Gaussian component, the ith element of
the static coefficients for a time instance is assumed to be correlated
with only itself and the ith element of other time instances. This
means that the blocks of Σe

x in (10) are diagonalised. This causes
Σe

x to have a striped structure with only 45d parameters rather than
9d(9d + 1)/2 for the full case.

The noise model cannot be estimated a priori. If the noise is
known, then it is possible to obtain a full covariance matrix, but if
the noise is estimated, as in [4], this is complicated and computa-
tionally expensive. Unlike the speech model, the noise model has no
structure, since it has no state changes. Thus, the blocks on the lead-
ing diagonal of Σe

n (see (10)) are the same. With the assumption that
the blocks are diagonal and the noise of different time instances is
uncorrelated, then the estimation scheme in [4] can be used directly
and the static elements duplicated for each time instance.

A related scheme that also attempts to improve compensation
for dynamic parameters, but in the log-spectral domain, is described
in [8]. However, a large number of approximations were made to
derive the VTS form, including ignoring correlations between time
instances and parameter differences between time instances.

4. EXPERIMENTS

The compensation schemes described were evaluated on an artifi-
cially corrupted Resource Management task, and on a corpus col-
lected by Toshiba Research Europe with in-car recorded data.

4.1. Resource Management task

The compensation schemes described were evaluated on the 1000 word
Resource Management database to which Operations Room noise
from the NOISEX-92 database was added at 20 dB. This task contains
109 training speakers reading 3990 sentences, 3.8 hours of data. All
results are averaged over three of the four available test sets, Feb89,
Oct89, and Feb91, a total of 30 test speakers and 900 utterances.
State-clustered triphone models with either 1 or 6 components per
mixture were built using the HTK RM recipe. 10 000 samples per
distribution were used for extended DPMC. Since the additive back-
ground noise is known, it is possible to generate stereo data and use
single-pass retraining [6] to obtain “ideally” compensated systems.
It is also possible to extract the true noise model.

One approach to assess the quality of the compensation is to
compare a compensated model set with the single-pass retrained sys-
tem trained on stereo data. Figure 1 does this, using the average
Kullback-Leibler divergence per diagonal entry of the covariance
matrix over all the components. It uses the single-component sys-
tem, which means that full extended statistics could be extracted.
The known additive noise model had a full covariance matrix. The
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Fig. 1. Average Kullback-Leibler divergence between compensated
systems and a single-pass retrained (ideal) system.

first group of coefficients is the statics ys, the second the delta co-

efficients yΔ, and the third the delta-delta coefficients yΔ2
. As ex-

pected, the uncompensated system is furthest away from the single-
pass retrained system, and extended DPMC provides the most accu-
rate compensation given the speech and noise models. The differ-
ence between standard VTS and extended VTS is interesting. By def-
inition, both yield the same compensation for the statics. For the dy-
namics, however, the continuous time approximation does not con-
sistently decrease the distance to the single-pass retrained system.
Extended VTS, though not as accurate as extended DPMC, provides
a substantial improvement over standard VTS.

Scheme 20 dB 14 dB

— 38.1 83.8

VTS 7.3 13.8
eVTS 6.4 12.0
eDPMC 6.4 11.7

Table 1. Word error rates for eVTS compared with standard VTS and
eDPMC. Unsupervised noise model estimation at the speaker level.

The previous experiment assumed the noise models were
known. Table 1 shows results where noise parameters were esti-
mated per speaker in an unsupervised fashion with a hypothesis
from the uncompensated system [4]. The estimates were optimised
for standard VTS. The extended noise model distribution was gen-
erated by simply duplicating the static estimated noise distribution
for standard VTS (as described in section 3). For all cases the noise
models had a diagonal covariance matrix structure. Because this
was a system with 6 mixture components per state, robustness of the
extended clean speech statistics was an issue, so striped covariance
matrices were used.

The potential of compensation with extended statistics shows
in the difference between the performance of standard VTS and
extended DPMC (eDPMC): 13.8 % versus 11.7 % for 14 dB. Two
aspects are interesting to note. First, the diagonal extended noise
model contains less information than the diagonal noise model for
standard VTS. Even with that handicap, compensation with extended
VTS (eVTS) and eDPMC is better. The second aspect is that, when
compared with eDPMC, the first-order approximation in eVTS de-
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grades the performance only slightly at a 14 dB SNR, and not at all
at 20 dB. This may be in part because the noise profile is estimated
to maximise the log-likelihood of a first-order approximation, albeit
for standard VTS.

eVTS and eDPMC are able to produce full covariances as well,
which is beneficial especially in low signal-to-noise ratios [2]. In the
14 dB condition, the word error rate for eVTS with full-covariance
compensation is 11.4 % compared to 12.0 % for the diagonal case.
However, this yields lower gains than going from VTS to eVTS, and
decoding with full covariances is computationally expensive, though
joint uncertainty decoding and predictive linear transformations [9]
can be used. Therefore, this paper concentrates on diagonal covari-
ance compensation.

4.2. Toshiba In-car corpus

Initial experiments were run on a task with real recorded noise: the
Toshiba in-car database. This is a corpus collected by Toshiba Re-
search Europe Limited’s Cambridge Research Laboratory. It is a
small/medium sized task with noisy speech collected in an office and
in vehicles driving at various conditions. This work uses three test
sets containing digit sequences (phone numbers) recorded in a car
with a microphone mounted on the rear-view mirror. The ENON set,
which consists of 835 utterances, is recorded with the engine idle,
and has a 35 dB average signal-to-noise ratio. The CITY set, which
consists of 862 utterances, is recorded driving in cities, and has a
25 dB average signal-to-noise ratio. The HWY set, which consists of
887 utterances, is recorded on the highway, and has a 18 dB average
signal-to-noise ratio. Noise compensation was applied to a speech
recogniser trained on clean data from the Wall Street Journal corpus.
The system was based on the one described in [10], but the number
of components was reduced to about 650, more appropriate for an
embedded system. The number of components was about 7800. The
language model was an open digit loop.

VTS Word error rate (%)
iter. ENON CITY HWY

— 3.85 31.81 66.18

0 3.35 8.87 13.11
1 1.24 3.09 3.78
2 1.37 2.65 3.15

Table 2. Iterations of estimating the noise model and finding a hy-
pothesis for standard VTS on the Toshiba in-car task.

A noise model with diagonal additive noise covariance was es-
timated per utterance for standard VTS. An initial noise model was
estimated from the first and last 20 frames and used to find hypoth-
esis H(0) (iteration 0). Two iterations of maximum likelihood esti-
mation of the noise model and a decoding run were done. H(2) was
then scored. Table 2 shows this process. The extended noise model
was found by repeating the static components of the noise model for
standard VTS acquired in iteration 2.

Table 3 presents results for standard VTS and extended VTS. Be-
cause a per-utterance noise model was used, applying eDPMC was
not feasible. For extended VTS, the speech statistics were striped
as in table 1. Diagonal compensation is used. From table 3 it can
be seen that extended VTS reduces the WER by about 10 % relative
compared to standard VTS for all the noise conditions.

Word error rate (%)
Scheme ENON CITY HWY

VTS 1.37 2.65 3.15
eVTS 1.14 2.47 2.82

Table 3. Compensation with standard VTS and extended VTS on the
Toshiba in-car task. Noise model diagonal and from iteration 2 of
estimation for standard VTS in table 2.

5. CONCLUSION

Model-based noise robustness schemes based on VTS normally use
the continuous time approximation for dynamic parameter compen-
sation. This paper improves dynamic parameter compensation by
introducing extended VTS. It applies a first-order approximation
separately to consecutive static coefficients. The distribution over
dynamic parameters is then computed with the linear transforma-
tion that dynamic coefficients are computed with. The new method
was tested on a noise-corrupted Resource Management task, and a
Toshiba in-car corpus. With a noise model estimated with maximum
likelihood training for standard VTS, extended VTS obtained a 10 %
relative reduction in error rate over standard VTS.
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