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ABSTRACT

It is difficult to adapt discriminative classifiers, particularly kernel
based ones such as support vector machines (SVMs), to handle mis-
matches between the training and test data. In previous work adap-
tation was performed by modifying the kernel used with the SVM,
rather changing the SVM parameters themselves. However an ide-
alised form of compensation, single pass retraining, was used to alter
the generative models associated with the generative kernel. In this
paper vector Taylor series model compensation is used. This scheme
is more efficient and allows a noise model to be estimated. The per-
formance of the new scheme is evaluated on two continuous digit
tasks. On both tasks SVM-rescoring outperformed the baseline VTS
compensated models.
Index Terms: speech recognition, noise robustness, support vector
machines, vector Taylor series compensation.

1. INTRODUCTION

Speech recognition is normally based on generative models, in the
form of Hidden Markov Models (HMMs), and class priors, the lan-
guage model. These are then combined using Bayes’ decision rule.
An alternative approach is to use discriminative models, or discrimi-
native functions such as Support Vector Machines (SVMs) [1]. One
of the problems with using these discriminative models and func-
tions is that it is normally hard to adapt them to changing speakers
or acoustic environments. This is particularly true of kernel based
approaches, such as SVMs, where individual training examples are
used to determine the decision boundaries. One approach to han-
dling SVM-based adaptation is described in [2]. This involves using
the support vectors from the original, unadapted, model in combina-
tion with the adaptation data.

An obvious application area where there are large mismatches
between the training and test sets is speech recognition in noise.
Handling changing acoustic conditions has been an active area of re-
search for many years. Model-based compensation schemes [3, 4, 5]
are a powerful approach to handling mismatches between training
and test conditions. Well implemented model-based compensation
schemes tend to out-perform feature-based compensation schemes
as it is possible to more accurately model situations where speech is,
for example, masked by the noise.

In previous work [6], SVMs were adapted to differing noise en-
vironments by using noise-specific generative kernels. Generative
kernels use feature spaces defined by generative models, in this case
HMMs. By adapting these generative models to the changing noise
conditions allows noise-specific kernels to be produced. The model-
based compensation used was single-pass retraining (SPR) [3]. This
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is an idealised form of model-based compensation which is imprac-
tical for most applications as it requires the background noise to be
known and all the training data available. In this work the same ap-
proach for adapting the SVMs to the noise conditions is used, but
the compensation is performed using Vector Taylor Series (VTS)
model compensation with maximum likelihood noise estimation [7].
This is a more practical scheme than SPR. The combination of SVM
rescoring with VTS is evaluated on the AURORA task as in the pre-
vious work. In addition it is evaluated on data recorded in-car by
Toshiba Research Europe Ltd (TREL). This new data allowed the
evaluation on more realistic data, as well as how the scheme may be
used with sub-word units.

2. MODEL-BASED NOISE COMPENSATION

The first stage in producing a noise compensation scheme is to de-
fine the impact of the acoustic environment and channel on the clean
speech data, the mismatch function. In the mel-cepstral domain
used in this work the following approximation between the static
clean speech, noise and noise corrupted speech observations is used
(log(.) and exp(.) indicate element-wise logarithm or exponential
functions)
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whereC is the DCT matrix1. For a given set of noise conditions, the
observed (static) speech vector ys
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Mismatch functions for all the parameters can be obtained [7].
The aim of model-based compensation schemes is to obtain

the parameters of the noise-corrupted speech model from the clean
speech and noise models. Most model-based compensation meth-
ods assume that if the speech and noise models are Gaussian then
the combined noisy model will also be Gaussian. Thus to compute
the expected value of the observation for each clean speech com-
ponent (assuming a single noise component) the following must be
computed
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where the expectation is over the clean speech “observations” from
componentm and noise “observations” combined using equation 1.

1For a discussion of variations on this mismatch function see [8].
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There is no simple closed-form solution to these equations so various
approximations have been proposed. These include Parallel Model
Combination [3] and Vector Taylor Series [4]. An additional prob-
lem that must be solved is that noise models are not normally avail-
able. Thus these must be estimated from the observed data.

Vector Taylor series model-based compensation is a popular ap-
proach for model-based compensation [4, 5, 7, 9]. There are a num-
ber of possible forms that have been examined. In this work the
first-order VTS scheme described in [7] is used. A brief summary
of the scheme is given here. The static mean, μs

y , and covariance
matrix,Σs

y , of the corrupted speech distribution are given by [9]2
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where matrixA above is the partial derivative, ∂ys/∂xs, evaluated
at μs = μs

n − μs

x − μh. This may be expressed as

A = ∂y
s/∂x
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where F is a diagonal matrix with elements given by 1/(1 +
exp(2C-1(μs)). Similar expressions can be found for the dynamic
parameter compensation using the continuous time approximation.

The compensation schemes described above have assumed that
the noise model parameters, μn, Σn and μh, are known. In practice
these are seldom known in advance so must be estimated from the
test data. In this work the noise estimation is based on the Max-
imum Likelihood (ML) noise estimation scheme described in [7].
In addition, the Hessian approach for the noise variance in [5] was
implemented. This has no effect on recognition performance, but
improves the estimation speed as there are fewer back-offs to ensure
that the auxiliary function increases.

3. SVMs AND GENERATIVE KERNELS

Support Vector Machines (SVMs) [1] are an approximate imple-
mentation of structural risk minimisation. They have been found
to yield good performance on a wide range of tasks. The theory be-
hind SVMs has been extensively described in many papers and is
not discussed here. This section concentrates on how SVMs can be
applied to tasks where there is sequence data, for example speech
recognition.

One of the issues with applying SVMs to sequence data, such as
speech, is that the SVM is inherently static in nature; “observations”
(or sequences) are all required to be of the same dimension. A range
of dynamic kernels have been proposed that handle this problem. Of
particular interest in this work are those kernels that are based on
generative models [10, 11]. In these approaches a generative model
is used to determine the feature-space for the kernel. An example
first-order feature-space for a generative kernel with observation se-
quenceY may be written as
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where p(Y; λ(ω1)) and p(Y; λ(ω2)) are the likelihood of the data
using generative models associated with classes ω1 and ω2 respec-
tively. HMMs are used as the generative model in this paper. Consid-
ering only the derivative with respect to the means, the feature-space

2The dependence on the noise corrupted speech mean and clean speech
mean on the component have been dropped for clarity.
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where γm(t) is the posterior probability that component m gener-
ated the observation at time t given the complete observation se-
quence Y. Only the derivatives with respect to the means are used
in this work, though it is possible to use other, and higher-order,
derivatives. As SVM training is a distance based learning scheme it
is necessary to define an appropriate metric for the distance between
two points. In this work a maximally non-committal metric is used.

K(Yi,Yj ; λ) = φ(Yi; λ)T
G
-1
φ(Yj ; λ) (8)

where Yi and Yj are two observation sequences and G is related
to the Fisher Information matrix (the log-likelihood ratio is also in-
cluded). In common with other work in this area [10, 11], G is ap-
proximated by the diagonalised empirical covariance matrix of the
training data.

Classification using this form of generative kernel with observa-
tion sequenceY and training dataY1, . . . ,Yn is then based on the
SVM score S(Y)

S(Y) =
nX

i=1

αsvm

i ziK(Yi,Y; λ) + b (9)

ω̂ =

j
ω1, S(Y) ≥ 0
ω2, S(Y) < 0

(10)

where αsvm

i is the Lagrange multiplier for observation sequence Yi

obtained from the SVM maximum margin training, b is the bias and
zi ∈ {1,−1} indicates whether the sequence was a positive (ω1) or
negative (ω2) example.

4. SVMs FOR NOISE ROBUSTNESS

The previous two sections have described VTS model compensa-
tion and support vector machines with generative kernels. This sec-
tion describes how these schemes can be combined together to allow
noise-specific generative kernels to be used with a noise-independent
SVM for speech recognition. The process for training and evaluating
the SVMs is similar to the one described in [6]. The main difference
is that one-vs-one majority is used to handle the multi-class problem.

The procedure for training the noise-independent SVMs is:
1. For each training condition perform model compensation
2. Align all the training utterancesY1, . . . ,Yn using reference,

r = r1, . . . , rK to give the word-segmented data sequence
Ỹ1, . . . , ỸK

3. For each confusable pair (ωl, ωj) set λ = {λ(ωl), λ(ωj)}

(a) obtain φ(Ỹi; λ) for all training examples of ωl using
the appropriate noise compensated λ

(b) obtain φ(Ỹi; λ) for all training examples of ωj using
the appropriate noise compensated λ

(c) train a noise-independent SVM for pair (ωl, ωj) using
all positive (a) and negative (b) examples.

In this work only the log-likelihood ratio and derivatives with
respect to the means are used. There is an issue with directly using
equation 7. Model-based compensation schemes normally modify
the variances of the acoustic models. To keep the dynamic ranges
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of each set of features consistent standard-deviation normalisation,
rather than the variance normalisation in equation 7, is used. Note
this is not normally a problem as the same covariance matrices are
used for all sequences and the dynamic-range effects handled by the
metricG.

During recognition the following procedure is used:
1. Compensate the acoustic models for the test condition
2. Recognise the test utterance Y to obtain 1-best hypothesis,

h = h1, . . . , hK and align to give the word-segmented data
sequence Ỹ1, . . . , ỸK

3. For each segment Ỹi:
a) for each word pair {ωl, ωj} set λ = {λ(ωl), λ(ωj)}

ω̂ =

8<
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log
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count [ω̂] = count [ω̂] + 1
b) classification, ĥi, is given by:
1) if no ties in voting: ĥi = argmaxω{count[ω]}

2) if only two words (wl, wj) tie then ĥi determined using the
result from that pair in equation 11
3) if more than two words tie ĥi = hi

ε is used to scale the contribution of the log-likelihood ratio to the
SVM score. The log-likelihood ratio is the most discriminatory of
the dimensions of the score-space. However using a maximally non-
committal metric, G, all dimensions are treated equally. Thus ε is
used to reflect the usefulness of the log-likelihood ratio. As ε → ∞
the performance of the system will tend to the HMM performance.
In these experiments ε was normalised using the first element of the
metric G (associated with the log-likelihood ratio). Though in pre-
liminary experiments this made little different, it is felt that it makes
the choice of ε less sensitive to the task.

5. RESULTS

Two continuous digit recognition tasks were used to evaluate the
combination of VTS with the proposed SVM rescoring scheme. The
first AURORA 2 is a database where noise has been artificially added
to clean data. The second task used in-car data recorded by Toshiba
Research Europe Ltd. For both tasks HTK frontend was used to
derive 39 dimensional feature vectors consisting of 12 MFCCs ap-
pended with the zeroth cepstrum, delta and delta-delta coefficients.
The VTS approach adopted was similar to the procedure in [5]. An
initial estimate of the background additive noise for each utterance
was obtained using the first and last 20 frames of the utterance.
This was then used as the noise model for VTS compensation and
each utterance recognised. This hypothesis was used to estimate
a per-utterance noise model in an ML-fashion. This process was
then optionally repeated. The final recognition output used this ML-
estimated noise model for VTS compensation. For all SVM rescor-
ing experiments the SVMs were built using the top 1500 dimensions
of φ(Ỹi; λ) ranked using the Fisher ratio and ε was set to 2.

5.1. AURORA 2

AURORA 2 is a small vocabulary digit string recognition task [12].
As the vocabulary size (excluding silence) is only eleven (one to
nine, plus zero and oh) the number of word pairs is small (66 includ-
ing silence) making it suitable for the proposed scheme. The utter-
ances in this task are one to seven digits long based on the TIDIGITS

database with noise artificially added. The clean training data was
used to train the acoustic models. This comprises 8440 utterances
from 55 male and 55 female speakers. The acoustic models are 16
emitting states whole word digit models, with 3 mixtures per state
and silence and inter-word pause models. All three test sets, A,B
and C, were used for evaluating the schemes. For sets A and B, there
were a total of 8 noise conditions (4 in each) at 5 different SNRs,
0dB to 20dB. For test set C there were two additional noise condi-
tions at the same range of SNRs. In addition to background additive
noise convolutional distortion was added to test set C. Test set A was
used as the development set for tuning parameters.

For the SVM rescoring experiments, the SVMs were trained on
a subset of the multi-style training data available for the noise condi-
tions and SNRs in test set A. For each of the noise/SNR conditions
there are 422 sentences (a subset of all the training data). For the
SVMs training only three of the four available noise conditions (N2-
N4) and three of the five SNRs 10dB, 15dB and 20dB were used.
This allows the generalisation of the SVM to unseen noise condi-
tions to be evaluated on test set A as well as the test sets B and C.

SNR Set A Set B Set C
(dB) VTS SVM VTS SVM VTS SVM
20 1.69 1.35 1.46 1.22 1.57 1.33
15 2.36 1.82 2.37 1.77 2.47 2.00
10 4.39 3.23 4.12 3.16 4.49 3.52
05 11.20 8.22 10.05 7.68 10.69 8.70
00 29.55 23.00 27.54 22.93 28.41 25.01
Avg 9.84 7.52 9.11 7.35 9.53 8.11

Table 1. VTS (1 iteration) and SVM rescoring performance WER
(%) tests Sets A, B, C (ε = 2), SVMs trained on test set A N2-N4
10-20dB SNR.

Table 1 summarises the results for VTS compensation and SVM
rescoring for all three available test sets3. For all noise conditions
large reductions in WER were obtained using SVM rescoring com-
pared to the baseline VTS compensation. Though the relative gains
for test sets B and C were slightly less than that for test set A, it still
indicate that a good level of noise-independent classification can be
obtained using these noise-specific generative kernels.

5.2. Toshiba In-Car Data

The scheme was also evaluated on a task with real recorded noise:
the Toshiba in-car database. This is a corpus collected by Toshiba
Research Europe Limited’s Cambridge Research Laboratory. It is
a small/medium sized task with noisy speech collected in the office
and in vehicles driving at various conditions. This work uses three
of the test sets containing digit sequences (phone numbers) recorded
in a car with a microphone mounted on the rear-view mirror. The
ENON set, which consists of 835 utterances, is recorded with the en-
gine idle, and has a 35 dB average SNR. The CITY set, which con-
sists of 862 utterances, is recorded driving in cities, and has a 25 dB
average SNR. The HWY set, which consists of 887 utterances, is
recorded on the highway, and has a 18 dB average SNR. Noise com-
pensation was applied to a speech recogniser trained on clean data
from the Wall Street Journal (WSJ) corpus. The total number of
states was about 650 with 12 Gaussian components per state. This

3For a more detailed discussion of the set-up and improved performance
using the ETSI frontend and optimised mismatch function see [8].
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system is more compact than the usual form of system built on the
WSJ data, but is felt to be more realistic for an embedded application
whilst maintaining the flexibility to be applicable to a wide-range of
tasks. For the initial decoding the acoustic models were decision tree
clustered state, cross-word triphones, with three emitting states per
HMM, twelve components per GMM and diagonal covariance ma-
trices. In addition to the clean system, a multi-style trained system
was built. The training data for this system was generated by adding
car-noise onto the WSJ data. For additional information about the
noise sources and SNRs see [13].

System VTS Condition WER (%)
iter ENON CITY HWY

Clean — 3.85 31.81 66.18
VTS 1 1.24 3.09 3.78
+SVM 1.25 2.60 3.17
VTS 2 1.37 2.65 3.15
+SVM 1.31 2.14 2.48
MST — 2.71 6.82 27.50

Table 2. Clean, VTS, SVM rescoring (ε = 2) andMulti-style trained
(MST) system performance on the Toshiba in-car task.

Table 2 shows the performance of VTS on the Toshiba in-car
data. As expected there are large gains over the unadapted Clean
system performance and even the system trained in a multi-style
fashion. It is not possible to do SVM rescoring with the cross-
word triphone models as whole word SVM parameters are required.
To handle this a word-internal system was built using the same
data. These sub-word models could then be combined to form
context-independent whole-word models. This allows models with
the same complexity as the baseline system to be constructed. Note
some words, such as “OH” only occur in the WSJ training data 89
times (including phrases such as “OH NO” rather than number se-
quences). Applying SVM rescoring using generative kernels based
on these word-internal models gave gains on the two lower SNR con-
dition sets CITY and HWY and no difference in performance for
the ENON condition. VTS iteration 2 results were obtained after
re-estimation of the noise parameters based on recognition hypoth-
esis from VTS iteration 1. Better noise estimates could have been
obtained if the recognition hypothesis from SVM rescoring of VTS
iteration 1 was used. As different acoustic models are used for the
SVM kernel, there is a small cross system effect. Thus for the HWY
condition setting ε = ∞ gave a WER of 3.01% for VTS iteration
2. Thus SVM rescoring gave gains of over 10% relative reduction in
WER over VTS taking into account cross-system effects.

It is also interesting to see what happens when only a subset
of the SVM pairs are used. This is more similar to only rescoring
highly confusable pairs as done, for example, in [6]. The subset
of SVMs was chosen according to the confusion matrix obtained
after VTS iteration 2 of the previous experiment. Using only the 5
most confusable pairs (in order of the number of errors) for rescoring
achieved a WER of 2.80% on the HWY condition (VTS iteration 2).
Thus the approach is useful where the number of classes makes the
current simple one-vs-one majority voting scheme impractical.

6. CONCLUSIONS

This paper has described how vector Taylor series model compen-
sation can be used in combination with SVM rescoring to improve

noise robustness. VTS is used to compensate the acoustic models,
in this case HMMs, which are then used to define feature-spaces for
noise specific kernels. These so-called generative kernels allow the
variable length speech data to be mapped to a fixed dimensional vec-
tor. This scheme was then evaluated on two digit string recognition
tasks. To handle the multi-class problem a rescoring process was
used. Hypothesised word boundaries were identified and then ma-
jority voting applied given those boundaries. This allows continuous
digits, rather than just isolated digits, to be rescored.The AURORA
2 task is a standard task with noise artificially added to clean digit
strings. The second task was recorded in-car, thus being more real-
istic. On both task SVM-rescoring out-performed the baseline VTS
compensated acoustic models. In addition rescoring only a highly
confusable subset still yielded gains. The baseline models used for
these experiments were trained using ML. Using discriminative cri-
teria to train the HMM system may yield gains for the baseline VTS
configuration. However, it is expected that there will then be addi-
tional performance gains for SVM rescoring.
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