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ABSTRACT

It has been a common practice in speech recognition and elsewhere
to approximate the log likelihood of a Gaussian mixture model
(GMM) with the maximum component log likelihood. While often a
computational necessity, the max approximation comes at a price of
inferior modeling when the Gaussian components significantly over-
lap. This paper shows how the approximation error can be reduced
by changing component priors. In our experiments the loss in word
error rate due to max approximation, albeit small, is reduced by 50-
100% at no cost in computational efficiency. Furthermore, we expect
acoustic models will become larger with time and increase compo-
nent overlap and word error rate loss. This makes reducing the ap-
proximation error more relevant. The techniques considered do not
use the original data and can easily be applied as a post-processing
step to any GMM.

Index Terms— Gaussian mixture model, acoustic model, maximum
approximation, exponential distribution

1. INTRODUCTION

Modern speech recognition systems have acoustic models with thou-
sands of context dependent hidden Markov model states, each mod-
eled with a Gaussian mixture model (GMM). The total number of
component Gaussians easily exceed 100,000 and exact log likeli-
hood evaluation becomes prohibitively expensive. Clever use of hi-
erarchies of Gaussian clusters, [1, 2, 3, 4], efficiently locates top
Gaussians while only of the order of 1000 Gaussians are evaluated.
In such systems, exact evaluation is impossible and improvements in
the max approximations are useful.

A GMM is a distribution whose marginal density of x € R? is

Fx) =D mN(x; p;, Bi). )
i=1

We will use the shorthand f;(x) = N (x; u;, ;) for the Gaussian
component of f. A common approximation to (1) uses log(a+b) ~
max(a,b), which holds for positive numbers @ > b > 0. The
resulting approximation

F0) % (x) = max N (x; o, ). @

satisfies the bound log g(x) < log f(x) < logn + log g(x) and is
within log n of the exact value. In general, the approximation will be
better for smaller n and for well separated components. The upper
bound will be attained only in the case when all the values ; f; (x)
are equal. The related special case f; = fi,¢ = 1,...,n is an
important special case that we shall refer to as extreme overlap.
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We shall consider the more general approximation
9(x) = maxwiN (x; p;, 3)
K3

where w; may be chosen such that >, w; # 1. For extreme overlap,
w; = 1 gives the exact value of f. The challenge is to do better for
the cases of moderate overlap too. The approximation g(x) is more
general than g(x) and requires the same amount of computation.
Thus we believe there exist w; that approximate f better than g. We
explore how to choose w in this paper.

The rest of this paper is organized as follows. Section 2 introduces
two expected value strategies for obtaining w, Section 3 discusses
how to scale w to make g a distribution, and Section 4 shows how to
estimate w to minimize the Kullback-Leibler divergence between g
and f. Section 5 shows experimental results for each technique.

2. EXPECTED VALUE OF THE PRIORS
Let B; be the regions where component ¢ dominates

B Y ix: fi(x) > f;(x) forall i j}

If w; is allowed to vary with x € B; then g(x) is exactly equal to
f(x) for the choice

fx) i mifi(x)
filx) filx)

The expected value of w; (x) is independent of x and can be used for
w;. We have

wi (X) =

Eflwi(x)[x € Bi] =Y mFs[f;(x)/ fi(x)|x € Bil.

j=1
Using Jensen’s inequality we have the approximate expression

Ef[fi(x)/fi(x)|x € Bi]

e Efi [log(fi(x)/ fj(x))|x€B;]

\Y

e B log(fi (3)/ £5 ()]
e*D(fz‘Hfj)

where going from the first to the second line we are assuming the
quantity is dominant inside of 13;. Consequently we get

Eflwi(x)|x € Bi] = Z mje” Pl 3)
j=1

This can be computed analytically and very efficiently.
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A more computationally intensive approach would be to estimate the
expected value directly

oy
I5, Y " dx

Jp, Fx)dx

If we draw samples {x; }5_; from f(x) the Monte Carlo estimate
of the expected value is

Ef [wi (X)lX € Bl}

PO f(xk)l{ZEB }(xk)
Ek 1 Heen,y (Xk)

Introducing the index sets, B; = {k : x € B;}, the last expression
can be more compactly written

Ef [wi (X)|X S Bl} 4)

f(xk)
ZkEB fz(x,jc)

ZkEB

Eflwi(x)|x € Bi] =

3. THE MAX DISTRIBUTION

As noted in the introduction the max approximation g(x) is bounded
from above by f(x). Therefore

[ atax < [ reoax -

and g(x) is in general not a probability distribution function. We can
choose

w; =T/ Q)
in such a way that g(x) becomes a distribution. This gives o =
J g(x)dx. We estimate the integral as before by drawing samples
{xy}+_, from f, giving the Monte Carlo estimate

Lo~ g0x)
k
~ E . (0)
N = FGe)
The previous section did not enforce the normalization constraint,
J g(x)dx = 1. We could use the technique of this section to simi-

larly scale the priors w of equations (3) and (4) but we have not done
that in this paper.

4. MINIMIZING THE KULLBACK LEIBLER
DIVERGENCE

The Kullback Leibler divergence between the max-approximation g
and the GMM f is given by

mmm:/quMﬂmmu»m

which can be estimated by drawing samples {xk}szl from f. The
Monte Carlo approximation is given by

NEI (
b (wfés‘;k))

ol
- zb: ZZ; (fb (k) ) -l

= _NZ |By| log wy, + C,
b

D(fllg)

Q

L
N
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where C is independent of wy, save through the sets 3,. For the

constraints we have in the same way,

/g(X) dx

Q

I
-1
£
2|

; Fo (%K)
.Fb are the fractional ?ounts D oke B, Too - M wefix By C(?rrespond—
ing to the present estimate of wy, then the rest of the function can be
minimized analytically satisfying the constraint. The Lagrangian to
be optimized is

L(w,\) = \Bb\logwb + A=

1
N

! Zwab — 1)
b

Differentiating and equating to zero we get

_ 15

7, N

and the corresponding value of D(f]|g) is

1
7N2|Bb|log@+c
b

After we update w with @ according to this equation the sets 3, will
no longer be consistent with @ — if they were we have found the
minimal value for w. Thus we need to recompute the sets By (&),
and iterate as follows.

4.1. Aniterative algorithm to minimize the Kullback Leibler di-
vergence

Putting together all the observations of the previous section we pro-
pose the following iterative algorithm

1. Precompute fp(xy) forallk =1,...,Nandb=1,...,n

. Compute B;, and F}, based on current value of wp.
|Bb|/Fo.

2

3. Compute @, =

4. Compute By and F}, based on @p.
5

6

1 A T . N A
. Compute o = >, s [ and normalize wy, = @y /cv.

. Letwy = W, By = By and repeat from step 3 until conver-

gence.

5. EXPERIMENTAL RESULTS

The merits of our proposed techniques were assessed on an IBM
internal Chinese (Mandarin) test set. This data set was collected in
automobiles under a variety of noise conditions. It has altogether
184,693 words from 31,067 sentences.

Two acoustic models, named 122K and 149K, were built as follows.
For the 122K model, the acoustic feature vectors were obtained by
first computing 13 Mel-cepstral coefficients (including energy) for
each time slice under a 25 msec. window with a 15 msec. shift.
Spectral subtraction [5] was applied during cepstrum computation.
Nine such vectors were concatenated and projected to a 40 dimen-
sional space using linear discriminant analysis (LDA). The acoustic
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Fig. 1. The two figures are a graphical representation of two GMMs for respectively a speech and silence state of the 122K model. The
silence GMM comprises 259 Gaussians and the speech GMM has 64 Gaussians. The first two dimensions of the 40 dimensional feature space
are shown. Each Gaussian is represented as an ellipsoid centered at the mean and with radius equal to 0.2 standard deviations. Thicker lines
corresponds to Gaussians with larger priors. Note that the silence state has considerably larger overlap between Gaussians than for the speech
state. A picture in 2 dimensions could be deceptive as a visualization for a 40 dimensional Gaussian, but in this case pairwise KL divergences
verifies the intuition. The number of Gaussians is probably the primary reason for the overlap.

models were built on these features with a phoneme set containing
182 phonemes. Each phoneme was modeled with a three state left
to right HMM. Using a phonetic context of two phonemes to the
left and right within the word and one phoneme to the left across the
word, these phoneme states were clustered into 1,450 context depen-
dent (CD) states. The CD states were then modeled with on average
84 Gaussians per state, resulting in a total of 122,366 Gaussians in
the acoustic model.

The 149K model was built almost identically to the 122K model,
except its feature space did not have spectral subtraction. This model
had 2,143 context dependent states, an average of 70 Gaussians per
state for a total of 148,942 Gaussians. We include results for two
acoustic models simply to validate the effectiveness of our methods.
The training data set contains about 568 hours of audio, collected in
automobiles under a variety of noise conditions. This is for the most
part an IBM internal corpus with about 32 hours of data from the
SPEECON [6] database.

The 122K model, when evaluated on the test set, had 4,752 words
and 3,151 sentences in error, resulting in a word error rate of 2.57%
and a sentence error rate of 10.14%. The 149K model had 5,377
word and 3,454 sentence errors, resulting in a word error rate of
2.91% and a sentence error rate of 11.12%. The worse error rate of
the 149K model is due to the fact that its feature computation does
not include spectral subtraction.

5.1. Visualizing overlap between Gaussians of GMM

To gain better intuition into the difference between GMM log-
likelihood and its max approximation, we first tried to visualize the
overlap between Gaussians of GMM. This is shown in Figure 1 for
two GMMs, one modeling a state of silence and another modeling a
state of speech.

From Figure 1 we note that in some regions of the feature space,
especially so for silence GMM, there appears to be a considerable
overlap between Gaussians. In those regions we would expect the

silence | speech | overall

122K | baseline | 0.033 0.035 0.035
e P 0.022 | 0.034 | 0.034

E[w] 0.024 0.033 0.033

norm w 0.155 0.036 0.037

min KL 0.020 0.032 0.032

149K | baseline | 0.032 0.035 0.035
e P 0.021 | 0.034 | 0.034

E[w] 0.039 0.032 0.033

norm w 0.285 0.035 0.037

min KL 0.020 0.032 0.032

Table 1. Average absolute difference between sum and max log-
likelihoods on the test data. ¢~ and E[w] are with the prior updates
of (3) and (4), respectively. norm w numbers are with the prior nor-
malization (5) and (6) of Section 3, and min KL numbers are with
the prior update (7) of Section 4.

max value to be a poor approximation to the GMM log-likelihood.

5.2. Difference between sum and max log-likelihoods & recog-
nition performance of various techniques

To check the quality of our approximations to GMM log-likelihood,
we computed the average difference between sum and max log-
likelihoods on the entire test set for the techniques discussed in this
paper. These values, for the 122K and 149K models, are presented
in Table 1. The table also shows the average difference for silence
and non-silence leaves separately for each of these techniques. The
average GMM log-likelihood on the test data for the 122K model
was 10.21 and for the 149K model was 10.54.

From Table 1, we first note that the average difference between sum
and max log-likelihoods is about three orders of magnitudes less than
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max relative sum relative

decode change | decode change

122K | baseline 4752 4678 -1.6%
e P 4703 -1.0% | 4691  -13%

E[w] 4740 -0.2% 4696 -1.2%

norm w 4706 -1.0% 4668 -1.8%

min KL 4725 -0.6% 4694 -1.2%

149K | baseline 5377 5282 -1.8%
e P 5327 -0.9% 5241 -2.5%

E[w] 5295 -1.5% 5224 -2.8%

norm w 5251 -2.3% 5177 -3.7%

min KL 5353 -0.4% 5263 2.1%

Table 2. Number of word errors and relative gain (or loss) resulting
from various techniques. For each method, decoding with both max
and sum log-likelihood scores is carried out, as shown in columns
labeled max decode and sum decode, respectively. Baseline numbers
use (1) for the sum and (2) for the max. e~ and E[w] are with the
prior updates of (3) and (4), respectively. norm w numbers are with
the prior normalization (5) and (6) of Section 3, and min KL numbers
are with prior update (7) of Section 4.

the log-likelihood itself. This small difference still seems to be of
significance for recognition errors, as seen from the gap between
max and sum decoding with baseline models in Table 2.

The sum decoding for the rows other than the baseline uses the re-
estimated priors in the computation of the GMM likelihood (1) with-
out concern for whether the priors add up to 1. Interestingly, as
seen from Table 2, the word errors from sum decoding also improve
from their baseline value for the 149K model, and in one case for
the 122K model. Our current hypothesis for this gain is as follows.
The re-estimated priors that no longer sum to 1 effectively introduce
state-dependent multipliers. States with more overlapping gaussians
get larger multipliers. Whether these state-dependent multipliers are
truly responsible for the observed gain in sum-decoding remains to
be seen.

From the overall values in Table 1 it appears that on average all four
techniques have a small impact on narrowing the gap between sum
and max log-likelihoods. However, as seen from max decoding num-
bers in Table 2, they all have an appreciable positive impact on error
rates.

Table 1 shows that min KL yields best approximation to GMM log-
likelihood. However, it does not result in the best word error rate.
This also is believed to be due to the secondary effect of the HMM
state-dependent multipliers.

6. CONCLUSIONS AND FUTURE WORK

‘We note that while the loss in word error rate due to the max approx-
imation to GMM log-likelihood is small, the tendency for acoustic
models to become larger with time will increase component overlap
and broaden the gap. The techniques considered in this paper have
a positive impact on bridging this gap. Furthermore, the techniques
considered have zero computational overhead and since they do not
use the original data, they can easily be applied as a post-processing
step to any GMM.

In the future, we plan to carry out direct EM training of the max
distribution.
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