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ABSTRACT

To improve speech recognition performance, a feature transfor-
mation based on discriminant analysis has been widely used to re-
duce redundant dimensions of features. Linear discriminant analy-
sis (LDA) and Heteroscedastic discriminant analysis (HDA) are of-
ten used for this purpose, and a generalization method for LDA and
HDA called Power LDA (PLDA) has been proposed. However, these
methods may result in unexpected dimensionality reduction for mul-
timodal data. It is important to preserve the local structure of the
data in reducing the dimensionality of multimodal data. In this pa-
per we introduce two methods, locality preserving HDA and locality
preserving PLDA. We also give an efficient calculation scheme to
obtain an optimal projection.

Index Terms— Speech recognition, Feature extraction, Multi-
dimensional signal processing

1. INTRODUCTION

Hidden Markov Models (HMMs) have been widely used to model
speech signals for speech recognition. However, they cannot pre-
cisely model the time dependency of features. In order to overcome
this limitation, several researchers have proposed extensions, e.g.,
segmental unit input HMM [1]. In segmental unit input HMM, the
immediate use of several successive frames as an input vector in-
evitably increases the number of dimensions. The concatenated vec-
tors often have strong correlations among dimensions, and often in-
clude nonessential information. In addition, high-dimensional data
require a heavy computational load. Therefore, to reduce dimension-
ality, a feature transformation method is often applied.

Linear discriminant analysis (LDA), also known as Fisher dis-
criminant analysis (FDA), is widely used to reduce dimensionality
and is a powerful tool to preserve discriminative information [2, 3].
In the speech recognition community, heteroscedastic discriminant
analysis (HDA) is also used to reduce dimensionality [4]. HDA
employs individual weighted contributions of the classes for its ob-
jective function. In addition, a generalization method for LDA and
HDA has been proposed, which is called power LDA (PLDA) [5].

These methods may result in unexpected dimensionality reduc-
tion if the data in a certain class consist of several clusters, i.e., mul-
timodality. In speech recognition, speech signals for acoustic model
training tend to be multimodal because they are generally collected
under various conditions, such as gender, age and noise environment.
Therefore, a dimensionality reduction method for multimodal data is
desired for improving speech recognition performance.

Recently, several methods have been proposed to reduce dimen-
sionality of multimodal data in the machine learning community [6,
7]. It is important to preserve the local structure of the data in reduc-
ing the dimensionality of multimodal data appropriately. Locality
preserving projection (LPP) [6] finds a projection such that the data
pairs close to each other in the original space remain close in the

projected space. Thus, LPP reduces dimensionality without losing
information on local structure. Local Fisher discriminant analysis
(LFDA) [7] is also proposed as a supervised method for multimodal
data, while LPP is an unsupervised method. LFDA combines the
ideas of FDA and LPP and maximizes between-class separability
and preserves within-class local structure.

In this paper, inspired by LFDA, we combine the ideas of LPP
and HDA. In addition, we also combine the ideas of LPP and PLDA.
Because there is a large amount of features in speech recognition,
considerable computational time is required to obtain an optimal
projection. In order to overcome this problem, we give an efficient
calculation scheme. Experimental results show that the locality pre-
serving dimensionality reduction methods yield better performance
than traditional ones.

The paper is organized as follows. Feature transformation meth-
ods are reviewed in Section 2. Existing locality preserving dimen-
sionality reduction methods are reviewed and proposed methods are
introduced in Section 3. An efficient calculation to obtain an optimal
projection is given in Section 4. Experimental results are presented
in Section 5. Finally, conclusions are given in Section 6.

2. LINEAR DIMENSIONALITY REDUCTION METHODS

We formulate the problem of dimensionality reduction. Given n-
dimensional features xj ∈ R

n(j = 1, 2, . . . , N), e.g., concatenated
speech frames, and associated class labels yj ∈ {1, 2, . . . , L}, e.g.,

phonemes, let us find a projection matrix B ∈ R
n×p that transforms

these features to p-dimensional features zj ∈ R
p(j = 1, 2, . . . , N),

where p < n, zj = BT xj , L denotes the number of classes, and N
denotes the number of features. To find a projection matrix B, we
briefly review three techniques: LDA, HDA and PLDA.

2.1. Linear Discriminant Analysis

The within-class covariance matrix C(W ) and the between-class co-
variance matrix C(B) are defined as follows [2, 3]:

C(W ) =
1

N

LX
l=1

X
j:yi=l

(xj − —l)(xj − —l)
T , (1)

C(B) =

LX
l=1

Pl(—l − —)(—l − —)T , (2)

where —l is the mean of features in class l, — is the mean of all
features, and Pl is the weight of class l. LDA finds a projection
matrix B that maximizes the following objective function:

JLDA (B) =

˛̨̨
BT C(B)B

˛̨̨
˛̨̨
BT C(W )B

˛̨̨ . (3)
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The following function is defined as another objective function
of LDA:

JLDA (B) = tr
“
(BT C(W )B)−1BT C(B)B

”
. (4)

The optimization of Eqs. (3) and (4) results in the same transforma-
tion [2].

The within-class scatter S(W ) and between-class scatter S(B)

could be employed in place of C(W ) and C(B), respectively. The

within-class scatter is defined as S(W ) = NC(W ) and the between-
class scatter is defined as S(B) = NC(B). The same solution is
obtained even if C(W ) and C(B) in Eqs. (3) and (4) are replaced

with S(W ) and S(B), respectively.

2.2. Heteroscedastic Discriminant Analysis

The following objective function is defined in HDA, which considers
individual weighted contributions of the class variances [4].

JHDA (B) =

LY
l=1

0
@
˛̨̨
BT C(B)B

˛̨̨
˛̨̨
BT ClB

˛̨̨
1
A

Nl

,

∝

˛̨̨
BT C(B)B

˛̨̨
QL

l=1 |BT ClB|Pl
, (5)

where Nl denotes the number of features labeled as class l and Cl is
a class covariance matrix in class l. Cl is defined as

Cl =
1

Nl

X
j:yi=l

(xj − —l)(xj − —l)
T . (6)

The within-class covariance satisfies C(W ) =
PL

l=1 PlCl. The so-
lution to maximize Eq. (5) is not analytically obtained. Therefore, a
numerical optimization technique is performed to maximize Eq. (5)
with respect to B.

2.3. Power Linear Discriminant Analysis

We have proposed the following objective function, which integrates
LDA and HDA [5]:

JPLDA (B, m) =

˛̨̨
BT C(B)B

˛̨̨
˛̨̨
˛̨̨ LX

l=1

Pl(B
T ClB)m

!1/m
˛̨̨
˛̨̨
, (7)

where m denotes a control parameter. We have referred to it as
power linear discriminant analysis (PLDA). Intuitively, as m be-
comes larger, the classes with larger variances become dominant in
the denominator of Eq. (7). Conversely, as m becomes smaller, the
classes with smaller variances become dominant. Thus, by varying
the control parameter m, the objective function can represent various
objective functions. If m is set to one/zero, the objective function
agrees with the LDA/HDA objective function [8]. One issue regard-
ing PLDA in practice is how to select the optimal control parameter
m. In [9], the selection method of an optimal control parameter is
provided.

3. DIMENSIONALITY REDUCTION PRESERVING
LOCALITY OF DATA STRUCTURE

Recently, several dimensionality reduction methods for multimodal
data have been proposed in the machine learning community. We re-
view locality preserving projection (LPP) and local Fisher discrim-
inant analysis (LFDA). Then, we propose locality preserving HDA,
which combines the ideas of LPP and HDA, and locality preserving
PLDA, which combines the ideas of LPP and PLDA.

3.1. Locality Preserving Projection

Let A be a symmetric n × n matrix, which is called an affinity ma-
trix. The (i, j)-element Aij of A is the affinity between xi and xj .
The affinity Aij becomes a large value if xi and xj are located in the
near distance. Contrarily, Aij becomes a small value if xi and xj are
located in the far distance. There are several different definitions of
A, e.g., a heat kernel or a nearest neighbor. The objective function
of LPP is defined as follows [6]:

JLPP (B) =
1

2

NX
i,j=1

Aij ||BT xi − BT xj ||2, (8)

s. t. BT XDXT B = I, (9)

where X = [x1x2 · · ·xN ], I is the identity matrix, and D is a diag-

onal matrix whose (i, i)-element is as follows: Di,i =
PN

j=1 Ai,j .

In LPP, the data pairs close to each other in the original space
remain close in the projected space. LPP is an unsupervised dimen-
sionality reduction method.

3.2. Local Fisher Discriminant Analysis

Local Fisher discriminant analysis (LFDA) [7] has been proposed
by Sugiyama, which combines the ideas of LDA (FDA) and LPP.

He reformulated the within-class scatter S(W ) and the between-class
scatter S(B) in a pairwise manner:

S(W ) =
1

2

NX
i,j=1

W
(W )
ij (xi − xj)(xi − xj)

T , (10)

S(B) =
1

2

NX
i,j=1

W
(B)
ij (xi − xj)(xi − xj)

T , (11)

where

W
(W )
ij =

(
1/Nl if yi = yj = l,

0 if yi �= yj ,
(12)

W
(B)
ij =

(
1/N − 1/Nl if yi = yj = l,

1/N if yi �= yj .
(13)

Based on an affinity matrix A and the pairwise expressions of the
between/within class scatter, a local within-class scatter and a local
between-class scatter are defined as follows [7]:

S̃(W ) =
1

2

NX
i,j=1

W̃
(W )
ij (xi − xj)(xi − xj)

T , (14)

S̃(B) =
1

2

NX
i,j=1

W̃
(B)
ij (xi − xj)(xi − xj)

T , (15)
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where

W̃
(W )
ij =

(
Aij/Nl if yi = yj = l,

0 if yi �= yj ,
(16)

W̃
(B)
ij =

(
Aij(1/N − 1/Nl) if yi = yj = l,

1/N if yi �= yj .
(17)

Both S̃(W ) and S̃(B) put a weight on sample pairs in the same class.
The objective function of LFDA is defined as follows:

JLFDA (B) = tr

„“
BT S̃(W )B

”−1

BT S̃(B)B

«
. (18)

LFDA searches for a projection matrix B such that nearby data pairs
in the same class remain close and the data pairs in different classes
are separated from each other; far-apart pairs in the same class are
not forced to be close. Thus, LFDA is a supervised dimensionality
reduction method. If Aij is taken to be one for all in-class pairs,

LFDA corresponds exactly to LDA because S̃(W ) and S̃(B) agree

with S(W ) and S(B), respectively.
In the same fashion as the definition of LDA objective functions,

the following function is defined as another objective function of
LFDA:

JLFDA (B) =

˛̨̨
BT S̃(B)B

˛̨̨
˛̨̨
BT S̃(W )B

˛̨̨ . (19)

The optimization of Eqs. (18) and (19) results in the same projection.

The local within-class covariance C̃(W ) and the local between-
class covariance C̃(B) can be defined as C̃(W ) = 1

N
S̃(W ) and

C̃(B) = 1
N

S̃(B), respectively. The same solution is obtained when

S̃(W ) and S̃(B) in Eqs. (18) and (19) are replaced with C̃(W ) and

C̃(B), respectively.

3.3. Local Heteroscedastic Discriminant Analysis

Inspired by LFDA, we combine the ideas of LPP and HDA. Let us

define a local class covariance matrix C̃l as follows:

C̃l =
1

2Nl

NX
i,j=1

W̃ l
ij(xi − xj)(xi − xj)

T , (20)

where

W̃ l
ij =

(
Aij/Nl if yi = yj = l,

0 otherwise.
(21)

From Eqs. (16) and (21), W̃
(W )
ij =

PL
l=1 W̃ l

ij . In addition, C̃(W )

satisfies C̃(W ) =
PL

l=1 PlC̃l. We define the following objective
function:

JLHDA (B) =

˛̨̨
BT C̃(B)B

˛̨̨
QL

l=1

˛̨̨
BT C̃lB

˛̨̨Pl
, (22)

which is called local HDA (LHDA). If Aij is taken to be one for

all in-class pairs, LHDA corresponds exactly to HDA because C̃l

agrees with Cl.

3.4. Local Power Linear Discriminant Analysis

As in the case of LHDA, using local class covariances C̃l, we extend
the PLDA objective function as follows:

JLPLDA (B, m) =

˛̨̨
BT C̃(B)B

˛̨̨
˛̨̨
˛̨̨ LX

l=1

Pl(B
T C̃lB)m

!1/m
˛̨̨
˛̨̨
, (23)

called local PLDA (LPLDA). From Eqs. (19) and (22), LPLDA with
m=1 agrees with LFDA, and LPLDA with m=0 agrees with LHDA.
LPLDA corresponds exactly to PLDA when Aij is taken to be one
for all in-class pairs.

4. EFFICIENT COMPUTATION OF LOCAL CLASS
COVARIANCES AND LOCAL BETWEEN-CLASS

COVARIANCE

To obtain optimal projections of the LHDA and LPLDA objective

functions, the calculations of C̃l and C̃(B) are needed in advance.
Both matrices require N2 times summation. Because acoustic mod-
els in a speech recognition system are generally trained using a large
amount of speech data, the value of N tends to become large , e.g.,

106 to 108. Therefore, the computational costs of C̃l and C̃(B) tend
to be huge.

In order to calculate C̃l and C̃(B) efficiently, we assume that a
distribution of each class is constructed from several clusters, that
xi(i = 1, . . . , N) is generated from one of the clusters, and that the
number of clusters in each class is set in advance. We can redefine a
local class covariance as follows:

C̃l =

MlX
m=1

Pl,mCl,m, (24)

where Ml is the number of clusters in class l, Pl,m is the weight of
the m-th cluster in class l, and Cl,m denotes an m-th cluster covari-

ance in class l. C̃l in Eq. (20) is equal to C̃l in Eq. (24) when the
affinity matrix is defined as follows: Aij = 1/Pl,m if xi and xj

belong to the same cluster m in a class l, otherwise Aij = 0. To ob-
tain Pl,m and Cl,m, we employ the Expectation-Maximization (EM)

algorithm. We can efficiently calculate C̃l to employ this computa-
tional scheme under the above assumptions because N2 times sum-
mation is no longer required in Eq. (24).

Under the same assumptions, local between-class covariance
can be rewritten as

C̃(B) = C(T ) −
LX

l=1

Pl

 
PlCl + (1 − Pl)

MlX
m=1

Pl,mCl,m

!
,

(25)

where C(T ) denotes a total covariance matrix, which is defined as
C(T ) = C(B) + C(W ). Once we calculate C(T ) and Cl, and esti-
mate Pl,m and Cl,m using the EM algorithm, we can calculate C̃(B)

immediately.

5. EXPERIMENTS

We conducted experiments using the CENSREC-3 database [10].
CENSREC-3 is designed as an evaluation framework of Japanese
isolated word recognition in real car-driving environments. Speech
data were collected using 2 microphones: a close-talking (CT) mi-
crophone and a hands-free (HF) microphone. For training, a driver’s
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speech of phonetically-balanced sentences was recorded under two
conditions: while idling and while driving on a city street with a
normal in-car environment. A total of 28,100 utterances spoken by
293 drivers (202 males and 91 females) were recorded with both mi-
crophones. For evaluation, a driver’s speech of isolated words was
recorded under 16 environmental conditions using combinations of
three kinds of vehicle speeds (idling, low-speed driving on a city
street, and high-speed driving on an expressway) and six kinds of
in-car environments (normal, with hazard lights on, with the air-
conditioner on (fan low/high), with the audio CD player on, and
with windows open). In these conditions, the “hazard lights on“
condition was used only when idling. We used only 14,050 utter-
ances recorded with a CT microphone for training. We only used
three kinds of vehicle speeds in the normal in-car environment for
evaluation. A total of 2,646 utterances spoken by 18 speakers (8
males and 10 females) and collected using a CT microphone were
evaluated. The speech signals for training and evaluation were both
sampled at 16 kHz. The decoding process is performed without any
language model. The vocabulary size is 100 words, which includes
the original fifty words and another fifty similar-sounding words.

5.1. Baseline System

In CENSREC-3, the baseline scripts are designed to facilitate HMM
training and evaluation by HTK [11]. The acoustic models consist
of triphone HMMs. Each HMM has five states and three of them
had output distributions. Each distribution is represented with 32
mixture diagonal Gaussians. The total number of states with distri-
butions is 2,000. The feature vector consists of 12 MFCCs and log-
energy with their corresponding delta and acceleration coefficients
(total 39 dimensions). Frame length is 20 ms and frame shift is 10
ms. In the Mel-filter bank analysis, a cut-off is applied to frequency
components lower than 250 Hz.

5.2. Feature Transformation Procedure

Feature transformation was performed using LDA+MLLT [12],
HDA+MLLT [4], PLDA [5], LFDA [7] +MLLT , LHDA+MLLT,
and LPLDA for the spliced features. Eleven successive frames (143
dimensions) were reduced to 39 dimensions. In PLDA and LPLDA,
we assumed that projected class covariance matrices were diago-
nal and used the limited-memory BFGS algorithm as a numerical
optimization technique, and their control parameters were exper-
imentally selected. The LDA transformation matrix was used as
the initial gradient. In LFDA, LHDA and LPLDA, the number of
mixtures was four for each class, while the number of mixtures was
one for the classes that have training data of less than one percent of
the total. In addition, to obtain an optimal projection matrix, we em-
ployed an efficient computation scheme for calculating covariances.
To assign one of the classes to every feature vector, HMM state
labels were generated for the training data by a state-level forced
alignment algorithm using a well-trained HMM system. The number
of classes was 40, corresponding to the number of the monophones.

5.3. Results

We performed the experiments using the above feature transfor-
mations on CENSREC-3. The results are presented in Table 1.
Among dimensionality reduction methods for unimodal data, i.e.
LDA+MLLT, HDA+MLLT and PLDA, the lowest WER was ob-
tained by PLDA with m =−0.5. Among all dimensionality reduc-
tion methods, LPLDA with m =−0.25 yielded the lowest WER. The
locality preserving dimensionality reduction methods consistently
yielded better performance than the traditional methods.

Table 1. Word error rates (%) using feature transformation methods.
The best results are highlighted in bold.

WER WER

MFCC + Δ +ΔΔ 6.50

LDA+MLLT 6.12 LFDA+MLLT 5.10

HDA+MLLT 7.14 LHDA+MLLT 6.43

PLDA (m =−0.25) 6.50 LPLDA (m =−0.25) 5.03
PLDA (m =−0.5) 5.67 LPLDA (m =−0.5) 5.40

6. CONCLUSIONS

In this paper we introduced two dimensionality reduction methods,
HDA preserving the local structure of the data and PLDA preserving
the local structure. Experimental results showed that locality pre-
serving methods yielded better performance than traditional meth-
ods. The best performance was obtained by LPLDA, and it was
about 22% relatively better than the performance of the baseline sys-
tem.
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