
COMPRESSION OF LINE SPECTRAL FREQUENCY PARAMETERS
WITH ASYNCHRONOUS INTERPOLATION

Rachel Moldover and Alexander Kain

Center for Spoken Language Understanding
Department of Science & Engineering
Oregon Health & Science University

Portland, OR, USA

ABSTRACT

TTS systems require a trade-off between size and speech quality.
A larger acoustic inventory allows synthesis of speech that sounds
more natural. The Asynchronous Interpolation Model improves the
quality to size ratio, allowing better compression of large acoustic
inventories, as well as better quality speech from a small system. At
maximum compression, our method represents most phonemes by a
single frame of data. Coarticulation effects are specified as context-
specific non-linear interpolation functions. Dividing the speech fea-
tures into multiple data streams allows asynchronous interpolation.
In this study, AIM was applied to LSF parameters. Varying the num-
ber of streams allows for variable amount of compression. We used
three different objective measures to investigate the effect of number
and partitioning of streams. The first few weight functions (and the
last one) seem to offer the most error reduction. Partitions separating
the first 6 LSFs score well with all three measures.

Index Terms— speech synthesis, temporal decomposition, com-
pression, acoustic inventory, TTS

1. INTRODUCTION

Computer synthesized speech, often known as “text to speech,”
(TTS) has many applications. TTS allows blind people to listen to
their e-mail, or portable car navigation systems to give real-time
verbal directions to the driver. It is possible to produce speech that
is intelligible using a small amount of memory. For example, Ya-
maguchi et. al [1] wrote a rule-based module for speech synthesis
which used only 275 kB for both parameters and code. However,
the speech from such synthesizers is of low quality; it sounds noisy
and robotic. Today, the most natural sounding TTS is created by
concatenative unit selection synthesis. A larger acoustic inventory
allows synthesis of speech that sounds more natural.

How can a speech database be compressed with minimal loss
of quality after resynthesis? Compression of speech is done con-
stantly by the telephone networks. Many different compression /
decompression (codec) algorithms have been developed for this ap-
plication. But, because telephone speech is not phonetically labeled,
these codecs cannot take advantage of phoneme-specific knowledge.
The Asynchronous Interpolation Model (AIM) makes use of this
phonetic knowledge to achieve a greater ratio of quality to database
size [2].

Rachel Moldover passed away in December 2008.

2. METHODS

2.1. General AIM methods

An acoustic inventory that has been compressed by AIM has three
main components: basis vectors, weight functions, and partitions.
Roughly speaking, the basis vectors are target feature values for a
speech event (such as a phone). For example, in this study, each basis
vector consisted of 18 line spectrum frequency parameters (LSFs).
The weight functions are context-specific interpolation functions. (A
simple weight function could be a straight line, or a sigmoid). To al-
low for asynchronous transitions, the partitions define which weight
function applies to which features. (For example, the first 2 LSFs
might be associated with one weight function, and the remaining 16
with another.) The AIM is similar in many ways to temporal decom-
position [3, 4]. However, in the AIM compression of an acoustic
inventory, a single basis vector may be used in multiple locations,
allowing further compression. In addition, the AIM use of partitions
allows us to efficiently model asynchronous transitions and provides
more options for variable compression / quality.

The AIM is motivated by the way in which speech events (such
as phonemes) transition into one another. It is well known that
phoneme boundaries are indistinct. It is not as well recognized that
there may be multiple boundaries. Not all speech features transition
at the same time or rate. Consider the diphone /i: v/ in which the
movement of the formants begins long before the onset of frication.
In a sense there are two boundaries; one boundary at which formant
movement begins and another at which frication begins.

AIM compression may be summarized in five steps:

1. Convert the speech signal to interpolable features.

2. Choose locations of basis vectors.

3. Choose partitions to define each feature stream

4. Calculate weight functions.

5. Merge basis vectors as desired.

AIM compression must be applied to speech features that are inter-
polable with respect to time. Linear predictive coefficients (LPC)
cannot be used, but formant frequencies and LSF values can be in-
terpolated. (Raw speech waveforms are not interpolable at the time
scale which is of interest to us.) In this study, LSF features were
used.

After this initial compression to LSF values, each item in the
acoustic inventory is further compressed to basis vectors, weight
functions, and partitions. Given a speech waveform, let the short-
term speech signal x at frame m be equal to a synthesis operation S

3789978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

on feature vector f [m], with the features partitioned into N streams
sn[m]

x [m] = S (f [m]) = S (s1 [m] , . . . , sN [m]) (1)

where different streams can represent different types of feature tra-
jectories (one stream could represent formants and another could
represent voice-source). Or, different streams can represent parti-
tions of the same type of feature (one stream could represent the odd
LSFs and another could represent the even LSFs).

For the sake of simplicity, we will consider an AIM in which a
feature value only depends on the basis vectors directly to the left
and right (in time). The weight function will be represented by a
value for each frame. A single feature value may then be calculated
as follows:

sn[m]=(1−wul→ur
n [m])·bul

s + wul→ur
n [m]·bur

s (2)

ul and ur are acoustic events to the left and right of frame m.
w

ul→ur
n [m] are given from the frame associated with event ul to

the frame associated with ur . In later implementations of AIM, the
weight functions may be represented in a different form.

2.2. AIM applied to LSF speech model

2.2.1. Speech to LSFs

Previously, AIM has been successfully applied to a model of speech
which separates the signal into formants and voice-source [5]. In
this work, AIM was applied to an LSF model of speech. We began
with a sentence from the DARPA TIMIT acoustic-phonetic continu-
ous American English speech corpus [6]. We used speech recorded
at the Center for Spoken Language Understanding (CSLU) which
has been labeled phonetically as well as with pitch marks. The
speech was downsampled from 22050 to 16000 Hz. Eighteen LSFs
were calculated from overlapping, windowed 25-ms frames.

2.2.2. LSFs to AIM

We used AIM compression to convert the LSFs into local basis vec-
tors and weight values. Basis vector values were typically extracted
from the midpoints of phonemes; however, since basis vectors rep-
resent single acoustic events, some phonemes needed to contain sev-
eral basis vectors. Specifically, diphthongs contained two separate
basis vectors for the two different targets (/aI/: “aI1”, “aI2”), voiced
plosives contained two basis vectors for closure and burst (/b/: “bc”,
“b”), and unvoiced plosives contained three basis vectors for closure,
burst, and aspiration (/t/: “tc”, ”tb”, “th”). Finally, we represent af-
fricates as a combination of other basis vectors (/tS/: “tc”, “tb”, “S”).

Weight functions were represented by values stored for every
frame of speech. Weight values were calculated for each frame to
minimize the mean squared error in the feature values.

2.2.3. AIM to speech

The synthesized feature values (LSFs) were calculated from the
weight values and partition information. Copy synthesis was used to
recreate the original sentence.

2.3. Ways of measuring error

Error was calculated in three different ways. The error was calcu-
lated as the root-mean-square (RMS) error between the original and

the synthesized LSF vectors.

We did this with raw LSFs and then with LSFs weighted by a
perceptually-motivated warping function (mel-scale). Finally, the
log spectral distance (LSD) was also calculated.

2.4. Varying number of streams

As a study of compression versus quality we varied the number of
streams used to represent a speech sample and looked at the recon-
struction error.

One of the challenges in optimizing AIM compression is to
decide which features transition between phonemes most syn-
chronously and therefore should be modeled by the same stream. A
feature vector with d dimensions can be represented by anywhere
from one to d streams (d streams would be equivalent to no AIM
compression). For any number of streams between 2 and d−1, there
are many ways to associate features with each stream or partition
them. For example, suppose we have 18 features and 2 streams. We
could represent feature 1 by the first stream and represent features
2 through 18 by the second stream. Or, we could represent the
odd-numbered features by the first stream and the even-numbered
features by the second stream.

2.4.1. Continuous partition assumption

The total number of ways that the features can be partitioned into
streams is given by the Bell number [7].

The Bell number for 18 features is prohibitively large. (e.g. the
Bell number for 13 is 27,644,437) Therefore, for this experiment,
we made an assumption that synchrony is local in frequency. There-
fore, we only considered partitions composed of adjacent features.
For example, suppose we had only three features, numbered sequen-
tially. We would consider the following partitions: ([1] and [2,3]) or
([1,2] and [3]). We would not consider ([1,3] and [2]), since features
1 and 3 are not adjacent.

Within these constraints, we tried all possible partitions for every
number of streams from 1 to 18 (131,072 in total). For each possible
set of partitions, we calculated the error. We saved the set of parti-
tions with the lowest error value for each number of streams. Then
the lowest error values were graphed for each of the three objective
measures.

2.4.2. Random feature values

As one step towards understanding optimal AIM of speech data, in
addition to applying AIM to features extracted from speech, we also
created random feature values. At first random features with a flat
distribution were tested. Then, we created random features with the
same mean values and variances as LSFs from a speech sample.
These random features were also compressed with AIM, partitioned
in various ways, and the best results saved.

3. SOLUTION TO A THEORETICAL PROBLEM

In order to better interpret our experimental results, we considered a
theoretical problem with an exact solution. Suppose there are only
two basis vectors, between which there are an infinite number of
frames. Let the first basis vector consist of all zeros and let the sec-
ond consist of all ones. Let the feature values be random numbers
with a flat distribution between zero and one. Now, instead of a fixed

3790

W Flat Distribution, RMS Error Speech Distribution, RMS Error Speech Distribution, Weighted RMS Error

2 1–17,18 1–9,10–18 1–2,3–18

3 1–13,14,15–18 1–9,10,11–18 1,2,3–18

Table 1. Best partitions in random features. W represents the number of weights.

W unweighted MSE weighted MSE LSD

2 1–16,17–18 1–2,3–18 1,2–18

3 1–6,7–16,17–18 1,2–4,5–18 1,2–6,7–18

4 1–6,7–12,13,14–18 1,2,3–6,7–18 1,2–6,7–12,13–18

5 1–6,7–12,13,14–16,17–18 1,2,3,4–6,7–18 1,2,3–6,7–12,13–18

Table 2. Best partitions of LSFs. W represents the number of weights.

0 2 4 6 8 10 12 14 16 18
Number of Streams

0

200

400

600

800

1000

1200

1400

R
M

S
 E

rr
o
r

P
e
r

F
ra

m
e
,
H

z
 (

W
e
ig

h
te

d
)

LSFs from Speech

Random Features with
 Means & Var from Speech

Figure 1. Random features versus speech features.

number of feature dimensions and a variable number of weight func-
tions, consider a single weight function which is used to represent a
variable number of feature dimensions.

Let x be the number of features per frame. The mean error per
frame (totaled over all features) is given by (x − 1)/12, even when
x = 1 (in which case the error is zero). Suppose we have n features
represented by a single weight function. Now we decide to add a sec-
ond weight function. What is the best way to partition the n features?
If we choose to represent p by the first weight function and n − p
by the other, then the error will be (p − 1)/12 + (n − p − 1)/12 =
(n−2)/12, regardless of what number we choose for p! If we choose
to use the first weight function to represent a single feature, this cho-
sen feature will be perfectly modeled (with an error of zero). The
rest of the n − 1 features will be represented by the second weight
function for an total error of (n− 2)/12. Therefore, it makes no dif-
ference how we partition the features. The error is reduced by 1/12
each time we add a weight function.

4. RESULTS

4.1. Partitions

Table 1 shows a selection of the best partitions found for random
features. The data was based on 491 frames, and partition choice in
the first column is mostly affected by random variation. The second
column shows random features with means and variances taken from
speech. The means and variances taken from the speech data favor
a partition between nine and ten. LSF values with high variance
are more likely to be modeled separately (as are LSFs which vary
independently). The LSF values in the mid-range (9 through 12)
tend to have the highest variance. Column 3 shows the effects of a
perceptually weighted error measurement; the lowest LSF values are
partitioned separately.

Table 2 shows the best partitions found for actual speech data
using each of the three error calculations. The weighted MSE and
LSD place much more importance on correct modeling of the first
two LSFs as expected. With all methods, it is common to have a par-
tition boundary between LSFs 6 and 7. This makes sense as we know
that the first three pairs of LSFs often track the first three formants.

4.2. Comparison and analysis of error curves

Figure 1 shows two sets of data. The lower trace shows the best re-
sults after compression of a TIMIT sentence. The upper trace shows
the best results for compression of random features. The random
feature values were given the same mean and variance values as the
LSFs from the TIMIT sentence. Each data point represents the low-
est weighted LSF error that was obtained after trying all possible
contiguous partitions. Errors are measured between the LSF-coded
waveform and the LSF-AIM-coded waveform, thus using as many
streams as there are parameters results in zero error.

One can see that the error in the random data is not quite linear,
as it would be for features values with a constant mean and vari-
ance. There is a distinctive shape due to the means and variance
from speech and due to the weighted error measure. Comparing the
random data to the speech data in Figure 1 shows that the LSFs are
well correlated. The speech data can be represented by one weight
function with a much lower error rate than random data. This con-
firms that LSFs are a reasonable candidate for AIM compression.

Figure 2(a) shows the root-mean-square (RMS) error in LSFs
per frame. Raw error and weighted error are both shown. Fig-
ure 2(b) shows the error calculated as the log spectral distance be-
tween synthesized signals. These results give some idea of the trade-
off between compression and quality. The similarity between these
curves demonstrates that this trade-off is somewhat independent of

3791

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20

Number of Streams

M
ea

n
Er

ro
r P

er
 F

ra
m

e
in

 H
z

LSF RMS Error

Weighted LSF
RMS Error

(a) RMS error: raw and weighted.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 5 10 15 20

Number of Streams

Lo
g

Sp
ec

tr
al

 D
is

ta
nc

e LSD Error

(b) Log spectral distance (LSD).

Figure 2. Error curves.

the method chosen for measurement of error. The sharper drops at
the beginning and ends of these curves means that the largest gains
in quality may occur with the first few weights (And the last few; but
using 18 weight is equivalent to just using LSF compression).

5. FUTURE WORK

There are many, many ways to improve and expand the AIM. We
need to find an error function that best reflects listener opinion for the
type of distortions introduced by AIM compression. This would then
potentially drive changes in the function used to calculate weight
functions from features. AIM must be compared to other TTS meth-
ods with similar size and quality. We would like to consider varying
the number of streams to depend on the particular diphone transi-
tion. We must investigate how to optimize basis vector location and
number of basis vectors. In this study, the number of basis vectors
(and locations) per partition was constant, but varying these might
improve quality as well. Finally, the best means of quantization of
all parameters should also be considered.

6. ACKNOWLEDGMENTS

This work was supported by NSF Grant 0713617. The views in this
paper do not necessarily reflect those of the NSF.

7. REFERENCES

[1] M. Yamaguchi and J.-P. Hosom, “Development of a Rule-Based
Speech Synthesizer Module for Embedded Use,” IEICE Trans
Fund Elec, Com CS, vol. 76, no. 11, pp. 1990–1998, 1993.

[2] A. Kain and J. van Santen, “Unit-Selection Text-to-Speech Syn-
thesis Using an Asynchronous Interpolation Model,” Proceed-
ings of 6th ISCA Workshop on Speech Synthesis, Aug. 2008.

[3] S. Ghaemmaghami, M. Deriche, and B. Boashash, “Compar-
ative study of different parameters for temporal decomposition
based speech coding,” in ICASSP, 1997.

[4] B. Atal, “Efficient coding for LPC parameters by temporal de-
composition,” in ICASSP, 1983, pp. 81–84.

[5] A. Kain and J. van Santen, “Compression of acoustic invento-
ries using asynchronous interpolation,” in IEEE Workshop on
Speech Synthesis, 2002, pp. 83–86.

[6] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and D. S.
Pallett, “DARPA TIMIT acoustic-phonetic continous speech
corpus CD-ROM. NIST speech disc 1-1.1,” NASA STI/Recon
Technical Report N, vol. 93, Feb. 1993.

[7] E.T. Bell, “Exponential numbers,” Amer. Math. Monthly, vol.
41, no. 41, pp. 1–419, 1934.

3792

