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ABSTRACT

The current state-of-art HMM-bsed TTS can produce highly intel-
ligible output speech and deliver a decent segmental quality. How-
ever, its prosody, especially at the phrase or sentence level, tends to
be bland. The blandness of synthesized prosody is partially due to
the fact that a state-based HMM is rather inadequate in modeling a
global, hierarchical prosodic structure at a sentence or phrase level.
In this study, the prosody of longer units are first modeled explicitly
by appropriate parametric distributions. The resultant models are
then integrated with the state-level baseline models to generate an
optimal prosody by maximizing the joint likelihood of all, from state
to longer, units. Experimental results in both Mandarin and English
show consistent improvements over the state-based baseline system.
The improvements are both objectively measurable and subjectively
perceivable.

Index Terms— HMM-based TTS, Duration modeling, Pitch
Modeling, Gamma distribution, DCT

1. INTRODUCTION

HMM-based TTS models spectral envelop, fundamental frequency,
and duration simultaneously by the corresponding HMMs. For a
given text sequence, speech parameter trajectories can then be gen-
erated from trained HMMs in the Maximum Likelihood (ML) sense
[1].The speech generated from it is fairly smooth and exhibits no
apparent glitches. However, overly-smoothed parameter trajectories
tend to make synthesized speech sound less lively than natural.

Many research attempts have been tried to reduce over-smoothing
of trajectory model and the resultant degraded synthesized speech
quality. In [2], a parameter generation algorithm is proposed by
considering the global variance (GV) of generated parameters. The
probability of GV is used as a penalty for the reduced variance of
generated trajectory. An extension which applies Gaussian mix-
ture model to the GV term is used to improve the quality of an
HMM-based polyglot speech synthesizer [3]. A trajectory model
by imposing the explicit relationship between static and dynamic
features was also proposed [4]. Minimum generation error is used
as an alternative criterion in HMM parameter optimization [5]. It
tries to adjust HMM parameters trained by the conventional EM
algorithm to minimize the generation error between synthesized and
original parameter trajectories in training data.

With the above improvements for overly-smoothed parameter
trajectories, the segmental quality of synthesized speech is quite
acceptable, while prosody, especially at the phrase and sentence
level, still tend to be somewhat bland. As we know, Prosodic
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features are suprasegmental and have hierarchical structure. A state-
based HMM is rather inadequate in modeling a global, hierarchical
prosodic structure at a sentence or phrase level. Additionally, the
prosody of long-term units should be modeled with more appropri-
ate parametric distribution. Gamma distribution, which can model
random variables with only positive semi-definite distributions, is
more appropriate to duration modeling [6, 7, 8]. Discrete cosine
transform (DCT), which expresses a finite signal in terms of a sum
of cosine functions oscillating at different frequencies, is a good
parametric representation to characterize F0 curves for F0 modeling
[9, 10, 11].

In this paper, we use Gamma distribution to model durations on
phone and syllable levels, and DCT to parameterize the F0 curves
on syllable and phrase levels. The high-level models are integrated
with state-level model in the generation procedure where their joint
likelihood are maximized. The High-level model integration is simi-
lar to GV constraint [2] and utterance length constraint to parameter
generation[12].

2. PROSODY MODELING AND GENERATION IN
CONVENTIONAL HMM-BASED TTS SYSTEM

In conventional HMM-based TTS system, the state duration of a
standard HMM is explicitly modeled with a single Gaussian distri-
bution which is estimated by using state occupancy counts in the
Baum-Welch re-estimation procedure [12]. F0 features are modeled
by MSD-HMM [13], which can model the piece-wise continuous F0
trajectory stochastically. MSD models two, discrete and continuous
probability spaces: discrete for unvoiced regions and continuous for
voiced F0 contours. It models F0 in a different stream separated
from the spectral feature stream.

In the synthesis part, the parameters are generated based on max-
imum likelihood (ML). The state duration is the mean of the corre-
sponding Gaussian distribution. F0 trajectory is generated with dy-
namic feature constraint. For a given HMM model λ, it determines
a sequence of F0, F = f0, ..., fT−1, which maximizes log P (O|λ)
with respect to O = WF . W is static, delta and delta-delta coeffi-
cient matrix. If the state sequence Q is given by state duration, we
set

∂ log P (WF |Q, λ)

∂F
= 0 (1)

and obtain

W T U−1WF = W T U−1M (2)

where U and M are covariance matrix and mean vector of F0.
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3. PROSODY MODELING FOR LONGER UNITS

Richer prosodic contexts are used to capture prosody co-articulation
effects in HMM modeling. In practice, limited by insufficient train-
ing data, we usually have to cluster models of long contexts into
generalized ones to predict unseen contexts in test robustly. State ty-
ing via a clustered classification and regression tree (CART) is com-
monly used in conventional HMM-based TTS. CART is an effective
data mining tool which can efficiently handle messy data, missing
values, or predictor variables measured in different scales. However,
it has some limitations, e.g. difficulty in capturing underlying addi-
tive structure of the data [14]. The additive structure of prosody is
commonly observed across different languages. Multi-layer models
should be used to model the hierarchical structure of prosody compo-
nents. The decision tree-based state tying is inappropriate to model
hierarchical prosodic structure at a sentence or phrase level, even the
questions about these high-level prosody components are already in-
cluded in the question set to split nodes in decision tree growing.
Therefore, we propose to model the prosody of longer units explic-
itly and integrate them with state-level model in the parameter gen-
eration procedure. Additionally, the prosody of longer units should
be modeled with more appropriate parametric distribution.

In [8], we compared gamma and Gaussian distributions in their
model fitting to the duration distributions of longer units. The dis-
tributions (histograms) of phone and syllable durations resemble
gamma more than Gaussian distributions. The Chi-Square test of
goodness-of-fit for duration distributions in each leaf node of deci-
sion tree also shows most of leaf nodes which gamma fit better. We
use Gamma distribution for modeling phone and syllable durations.
It has the form of

p(x) =
1

Γ(a)ba
xa−1e−x/b

(3)

where Γ(a) =
R ∞
0

xa−1e−xdx. The expectation and variance of
random variable x under gamma distribution are E(x) = ab and
Var(x) = ab2, where a and b, a = μ2/σ2, b = σ2/μ, are functions
of μ and σ2, the mean and variance of duration for a leaf node.

In [10], we investigated the parametric representations for F0
contours. The fitting errors in term of the number of coefficients
show discrete cosine transform (DCT) is a more appropriate para-
metric representation to the F0 curves. We use DCT to parameterize
the F0 contours on both syllable and phrase levels. The most com-
mon DCT definition is

cn =
2

M

M−1X
m=0

sm cos[
π

M
n(m +

1

2
)], n = 0, ..., N − 1 (4)

where s0, ..., sM−1 is a finite signal of length M and represented by
N coefficients of DCT, c0, ..., cN−1. Similarly, the inverse transfor-
mation is defined as

sm =
1

2
c0 +

N−1X
n=1

cn cos[
π

M
n(m +

1

2
)], m = 0, ..., M − 1 (5)

4. PROSODY GENERATION BY MAXIMIZING THE
JOINT LIKELIHOOD OF DIFFERENT UNITS

State durations can be estimated more precisely if they can be reg-
ulated by the durations of longer and higher level units like phone
and syllables. The likelihood of state durations is jointly maximized

in conjunction with the weighted likelihood of phone and syllable
durations. The log likelihood of duration L(D) is defined as

L(D) =
X

j

"X
n

"X
k

log pj,n,k(dj,n,k)

+ α log pj,n(dj,n)

#
+ β log pj(dj)

#
(6)

subject to X
k

dj,n,k = dj,n and
X

n

dj,n = dj

where dj,n,k is the duration of state k, phone n, and syllable j. Cor-
respondingly, pj,n,k(·) is the probability density function of dj,n,k.
pj,n(·) and pj(·) are similarly defined. Two parameters, α and β, are
to weight phone and syllable durations likelihood. We use gamma
distributions for modeling phone and syllable durations to refine
Gaussian model of state duration. To maximize likelihood L(D),
we set

∂L(D)

∂dj,n,k
= 0 (7)

Limited by space, the detailed solutions to maximize likelihood
L(D) is given in [8]. If we set β =0 and use Gaussian distribution
to model phone duration, the solution is the same as in [15].

Similar to duration, the likelihood of the F0 trajectory is jointly
maximized in conjunction with weighted likelihoods of syllable and
phrase contours. The log likelihood of F0 trajectory L(F ) is defined
as

L(F ) = log P (Os|Qs, λs) + α log P (Oy|λy)

+β log P (Oh|λh) (8)

with respect to

Os = WsF , Oy = WyDyF and Oh = DhAF

where λs is HMM parameters on state-level, λy and λh are DCT
model parameters on syllable-level and phrase-level; Qs is state se-
quence given by duration model. Voiced/unvoiced decision for each
frame is given by state-level MSD. Dy is the DCT matrix for F0
contour on voiced part of syllable. On the phrase level, DCT ma-
trix Dh is performed on the F0 mean of each consistent syllable. A
is the matrix to get the mean of F0s on each syllable; To make F0
trajectory local continuous, Ws, the static, delta and delta-delta co-
efficient matrix, is used to calculate frame-level dynamic feature; To
capture the phrase intonation and make neighboring syllable-level
F0 contours globally continuous, Wy is the matrix to get the dy-
namic features of DCT first coefficient, which represents the mean
of F0 curve on syllable; α and β are the parameters to weight the
likelihood of syllable-level and phrase-level DCT models. When we
set α=0 and β=0, only state-level is considered.

To maximize likelihood L(F ), we set

∂L(F )

∂F
= 0 (9)

and obtain the solution as

{W T
s U−1

s Ws + α[(WyDy)T U−1
y WyDy]

+β[(DhA)T U−1
h DhA]}F

= W T
s U−1

s Ms + α[(WyDy)T U−1
y My]

+β[(DhA)T U−1
h Mh] (10)
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where Us and Ms are covariance matrix and mean vector of F0s
on state-level; Uy , Uh, My , Mh are covariance matrices and mean
vectors of DCT coefficients on syllable and phrase levels.

5. EXPERIMENTS AND RESULTS

5.1. Experimental setup

Two phonetically and prosodically rich, speaker-dependent continu-
ous speech corpora in American English and Mandarin Chinese are
used in our experiments. Both corpora were recorded by profes-
sional female speakers in broadcast news style. The two corpora are
divided into three sets: training, developing and testing parts with
corresponding sizes in number of sentences given in Table 1. The
training set is used for training the prosody model. Developing set
is used to determine the appropriate weights (α, β) in the Equations
(6) and (8). The testing set is used to measure the performance of
our improved prosody generation algorithm.

Table 1. Training, developing and testing sets (# sentences) of the
two speech corpora.

# sentences training developing testing

English 900 100 100
Mandarin 1, 000 100 100

Speech signals are sampled at 16kHz, windowed by a 25-ms
window with a 5-ms shift. The 40th order LPC spectral features are
transformed into static LSPs and their dynamic counterparts. F0 is
extracted on a short-time basis by applying the robust algorithm for
pitch tracking (RAPT) and normalized by the mean of sentence F0
contours. Five-state, left-to-right HMM phone models are adopted
in our baseline system.

Gamma distribution is used to model durations on phone and
syllable levels. When gamma distribution is employed instead of
Gaussian to model the durations of state, the formulas have too com-
plicated form for practical implementation. In addition, five-state
HMM phone model is used in our system and the state duration in
terms of the number of frames per state ranges from 1 to 5 observed
in 90% of states. It is difficult to tell the difference between Gaus-
sian and gamma distributions on such a small scale. Therefore, we
still use Gaussian distribution to model state durations.

F0 contours from voiced parts of syllable are used to F0 model-
ing on syllable-level. To reflect true tone contours, no artificial F0
values are interpolated for unvoiced parts. Considering the length
of voiced part in some syllables can be less than 50ms, 7 DCT co-
efficients, delta and delta-delta features of the first DCT coefficient
of proceeding, current and following syllables are used to represent
syllable-level F0 contour. Our previous analysis also show the DCT
with 7 coefficients can achieve the balance between the fitting error
and the number of coefficients [10]. On phrase-level, 2 and 3 DCT
coefficients are used to represent a contour that passes through the
F0 mean of each constituent syllable. On state-level, no parametric
representation is used for F0s.

Rich phonetic and prosodic contexts are used as a question set in
growing decision trees. They include tones and breaks for Mandarin;
stress, TOBI labels and POS for English; quin-phone, the position of
phone, syllable and word in phrase and sentence, and the length of
word and phrase for both Mandarin and English. The same question
set is used for prosody modeling on different levels. The questions
for splitting the nodes of tree are automatically selected in ML sense.

Minimum description length (MDL) criterion for balancing model
complexity and training data size is used as a stopping criterion for
state clustering in decision tree growing.

5.2. Evaluation Results and Analysis

Objective and subjective measures are used to evaluate the perfor-
mance of the proposed approach in testing data. Since the predicted
phone durations of generated utterances are in general not the same
as those of original speech, we first measure the root mean squared
error (RMSE) of phone durations of synthesized speech. F0 dis-
tortions are then measured by RMSE and correlation coefficient be-
tween the original and synthesized F0 trajectories over all aligned
voiced frames where the state durations of the original speech (ob-
tained by forced alignment) are used for speech generation. Sub-
jectively, a preference test is conducted to compare speech sentence
pairs synthesized by our approach and the baseline. The duration
and F0 in the baseline system are from the state-level model.

The RMSE results of phone duration predicted by the duration
models on state (baseline) and integrated with models on phone
and syllable levels are shown in Table 2. It shows that integrating
phone and syllable duration models can reduce RMSE of 23.46 ms
of English baseline to 21.35ms, and 30.1ms of Mandarin baseline
to 26.78ms, i.e, the relative improvements of 9.9% and 11.1% are
obtained for English and Mandarin corpora, respectively.

Table 2. RMSE for baseline and improved duration generation with
models on phone and syllable levels

RMSE (ms) English Mandarin

state(baseline) 23.46 30.10
state+ph 21.44 29.86

state+ph+syl 21.35 26.78

Table 3 shows the RMSE and correlation coefficients between
original and generated F0 trajectories for baseline and integrated
with models on syllable and phrase levels. RMSE improvements
of 0.87Hz and 0.67Hz, are obtained in English and Mandarin, re-
spectively. The correlation coefficient is improved from 0.70 to 0.75
for English and 0.91 to 0.92 for Mandarin. A high correlation co-
efficient of 0.91 achieved by the baseline Mandarin TTS prevents it
from being further improved significantly.

Table 3. RMSE and correlation of F0 for baseline and improved F0
generation with the models on syllable and phrase levels

English Mandarin
RMSE(Hz) correlation RMSE(Hz) correlation

state(baseline) 13.46 0.70 21.39 0.91
state+syl 12.60 0.75 20.88 0.92

state+syl+phr 12.59 0.75 20.72 0.92

The improved prosody generation is further evaluated by a per-
ceptual test. 50 Mandarin and 50 English sentences, which are se-
lected from the testing set and synthesized by the baseline and the
improved prosody generation, are evaluated in an AB preference
test. 6 subjects participate in the preference test. There are three
preference choices: 1) the former is better; 2) the latter is better;
3) no preference (The difference between the paired sentences can
not be perceived or the difference can be perceived but it is difficult
to choose which one is better). The preference scores between the
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baseline and the improved prosody generation are shown in Table
4. It shows that the speech synthesized by the improved prosody
generation outperforms the baseline system perceptually.

Table 4. The preference scores of the baseline and the improved
prosody generation with the models of longer units

Baseline better Improved better No Preference

20% 39% 41%

To analyze the generated F0 contours on syllable and phrase lev-
els, we cluster DCT coefficients in terms of TOBI labels for En-
glish, and tone types and the positions of current phrase in sen-
tence for Mandarin. On syllable-level, Mandarin has four types of
tones,indicated by numerical labels, English has three types of pitch
accents: L*, L+H*, and H*, and two types of final boundary tones:
L% and H%. On phrase-level, F0 contours are classified by the posi-
tion in sentence: first, inner and last, for Mandarin since the majority
of sentences are declarative, and the phrasal tones: L- and H- for En-
glish. The corresponding shapes of F0 contours on different levels
are shown in Figure 1 and 2. They are consistent with TOBI labeling
convention and phenomena observed by linguistics.
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Fig. 1. Shapes of syllable-level F0 contours
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Fig. 2. Shapes of phrase-level F0 contours.

6. CONCLUSION

We improve the prosody generation module in the conventional
HMM-based TTS. Longer units of prosody are parameterized and
modeled more properly. The prosody models of longer units are
integrated into the baseline system to improve the prosody gener-
ation by maximizing the joint likelihood of state and longer units.

The proposed prosody generation improves prosody prediction: the
RMSE of phone durations are reduced by 2.1 and 3.3 ms and the
RMSE of F0 trajectories are reduced by 0.87 and 0.67 Hz, in En-
glish and Mandarin synthesis. The synthesized speech by improved
prosody generation also receives a higher preference score in a
perceptional test, compared with that of baseline.
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