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ABSTRACT 

The work presented in this paper is subsequent to the paper 
“Probability Based Prosody Model for Unit Selection” 
which was published in ICASSP’2004. In the improved 
probability prosody model for corpus based concatenative 
Text-to-Speech (TTS), likelihood is replaced with posterior 
probability in the cost functions which conduct the 
following step, unit selection. Objective and subjective 
experiments show that posterior probability has obvious 
advantages over likelihood on robustness, flexibility and 
overall quality. 

Index Terms— Posterior probability, prosody model, 
unit selection, Text-to-Speech (TTS)

1. INTRODUCTION 

As we all know, Corpus-based concatenative TTS is still 
the most popular approach for speech synthesis although a 
lot of challenges in this direction need to be solved. Prosody 
models play very important roles in concatenative TTS.
General speaking, the task of prosody models in 
concatenative TTS is to predict pitch, duration and energy 
values in some explicit or implicit forms. The predictions 
help to find the best matched candidate segments from the 
corpus. At the beginning, the approaches of prosody 
modeling for concatenative TTS are derived from the rule-
based or other traditional TTS systems of that time [6, 7, 8], 
such as ToBI based pitch model and Fujisaki’s command 
based pitch model. Those approaches have good flexibility 
and some modifications can be performed if the candidate 
doesn’t exactly match the predictions. But it is difficult to 
keep natural and crisp voice quality.  Later, in order to take 
the advantage of big corpora, statistics approaches are 
popularly adopted. There are two trends. One trend is to 
predict the explicit targets as the traditional models [3, 4]. 
Over-smooth is a big challenge to be handled in this trend. 
The other trend is to give soft prediction such as GMM and 
the selected candidates are expected to be best matched 
from probability point of view [1]. It is very difficult to 
assign weights for multiple prosody models and other non-

prosody models. As the corpora built for TTS become 
bigger and bigger, and customers’ expectations in terms of 
quality become higher and higher, some approaches try to 
keep away from complicated prosody models [9,10], but it 
substantially sacrifices the flexibility.   Nowadays, we are 
still facing a lot of challenges on how to evaluate or tune a 
given prosody model because the criteria of “good” prosody 
is not quantitatively defined yet. It is also difficult to 
balance between flexibility and quality. 

The paper is organized as follows. In Section 2, the 
disadvantages of likelihood function and how posterior 
probability makes up for those disadvantages are discussed. 
In Section 3, the implementation details about posterior 
probability based prosody model are presented. In Section 
4, three experiments are done to verify these hypotheses. In 
Section 5, conclusions are given. Contributors are 
acknowledged in the last section. 

2.  LIKELIHOOD V.S. POSTERIOR PROBABILITY 

2.1 Briefing of likelihood function based prosody models

In the approach presented in [1], six prosody models are 
built to give prosody predictions and then generate sub-
costs for the following unit selection. The six models are 
prosody target model, prosody transition model, duration 
target model, duration transition model, energy target 
model and energy transition model.  For each model, all the 
available data are used to train a context dependent 
decision tree and the clustered data in each leaf are 
abstracted as a Gaussian mixture. Usually, one to three 
Gaussians are generated in each Gaussian mixture. 

In runtime, for each synthesis node, syllable or phone, 
each decision tree, iT , is traversed separately according to 
the context of the node to get the corresponding Gaussian 
mixture l

iM . l  indicates the l th leaf under the decision 

tree iT . For each available synthesis candidate x , the 

parameter sub-vector ix , which is corresponding to the tree 

iT , can be retrieved from the pre-built database. The minus 
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log of the likelihood is defined as the cost of the candidate 
x to iT  under the given context, as formula (1) 

In the unit selection step, beam search are performed. 
Costs generated by target models and transition models are 
accumulated with simple weights as target cost and 
transition cost. The cost function is integrated with some 
other cost functions generated by acoustic or phonetic 
models to fulfill the search and get the best candidate path. 
Concatenation is performed at the end on the candidates in 
the best path to get the eventual synthesized speech output.  

2.2 Disadvantages of likelihood function based prosody 
models 

While the likelihood function based prosody model 
achieved very good results on several languages including 
Mandarin and English [1, 2], some serious problems are also 
found one by one in the past years.  

The first problem is that the cost can be smaller than 
zero. As )|( l

ii MxP  is the probability density of model 
l
iM  at vector x , the value can be larger than 1. 

Accordingly, ),( l
ii MxC  can be smaller than zero. It is not 

reasonable as a “cost” definition. In unit selection, the 
concatenation costs between two candidate segments are 
usually set to be zero if they are also consecutive in the 
recording corpus. Smaller-than-zero sub-cost can introduce 
big confusions. 

The second problem is that each Gaussian mixture is to 
optimize the output locally, not globally. Some leaves with 
smaller clustered data in the trees can bring big variances 
in cost functions. For well known reasons, some leaves 
have little data, and the distribution )|( l

ii MxP  is 
sometimes sharp. In the cost function, small variance 
among candidates can have substantially different cost 
values. But usually, these leaves are not important.  It also 
happens in over-train situation. A cluster can be split to be 
two or more clusters when over-train happens. These 
clusters are regarded as independent ones and may 
dominate the search cost if the corresponding models are 
chosen. 

The third problem is difficult to tune the weights for 
different models. The individual Gaussian mixtures have 
totally different distributions, and there are different 
dimensions for each model, and the trees can grow to 
different sizes without obvious overtrained or undertrained 
indications. It is difficult to find a good way to tune the 
weights. Rich language specific skills are required for the 
weight tuning, but the final result is always not the best. 

2.3 Advances of Posterior Probability  

Posterior probability is defined as )|( i
l
i xMP . It can be 

calculated with formula (2). The cost, ),( l
iinew MxC , is 

defined as minus log of )|( i
l
i xMP  as formula (3).  
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In (2) and (3), iN is the Gaussian mixture number of 
the given decision tree iT , as known as the leaf number of 
the tree iT . 

Theoretically, formula (3) can avoid or reduce the 
negative impacts of the three disadvantages in formula (1).  

Obviously, in formula (2), both numerator and 
denominator are positive and the numerator is always 
smaller than denominator. It means 0),( ≥l

iinew MxC
under any condition, which meets the requirements of cost 
definition. 

The cost function ),( l
iinew MxC  is related to not only  

l
iM  but also all the Gaussian mixtures under the tree. 

When l
iM  is trained from a leaf with data sparse issue, 

)( l
iMP   can reduce the weight of the cost. And 

),( l
iinew MxC  can be zero only if x ’s probability output 

in other models lj
iM ≠   are zero.  No doubt, posterior 

probability can achieve global optimization better than 
likelihood function. It can also reduce the negative impacts 
by over-train issues 

Assume the distribution of the models under the 
decision tree is so extremely flat that all )|( 1 Nj

ii MxP ≤≤

are equal, then 
)4(),( i

l
iinew NMxC =

Under this assumption, ),( l
iinew MxC  is correlative to 

the size of tree. It brings a possibility that leaves number of 
the decision tree can be used to adjust the weight of the sub-
costs.  It is reasonable. For some important features such as 
pitch, the tree always has more leaves. For some relatively 
not important features such as energy, the tree always has 
fewer leaves.   

)1()61()|(log),( ≤≤−= iMxPMxC l
ii

l
ii
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Some experiments are designed to verify the three 
hypotheses in the following sections. 

3. IMPLEMENTATION 

The new approach was implemented in the Iraqi Arabic 
TTS which was an important component of Multilingual 
Automatic Speech-to-speech Translator as known as 
MASTOR for English-to-Iraqi. The Iraqi-Arabic TTS was 
built with around 5-hour recordings and some more text 
scripts for linguistic analysis.  

The system was combined with two parts. The first part 
performs language-specific processing. In this part, 
statistics approach based text vowelization[5],  rule based 
syllable boundary determination, rule based stress 
assignment and rule based graphs to phone are performed. 
The output of this part is a labeled text stream. The second 
part performs prosody prediction which is the major focus 
of this paper, context-dependent acoustic prediction, and 
time-domain concatenation. All the components in the 
second part are language-independent which are supposed 
to be good for other languages.  

As mentioned before, prosody modeling is the focus of 
this paper. In this component, three target models and three 
transition models are built for pitch, duration and energy 
separately. Pitch models are based on syllable unit. 
Duration and energy models are based on phone unit. 

As usual, pitch models are the most complicated. Fig.1 
shows the schema of parameters for pitch trees.  

For pitch target model, x is compound of 5 parameters 
of the syllable unit. Four log pitch values at position of 
0.125, 0.375, 0.625 and 0.875 separately, and one duration 
parameters. The duration parameter is introduced to 
distinguish the samples with similar pitch values but 
different duration values. Some syllables have unvoiced 
segments at the beginning or end, an interpolation 
approach is applied to make up for the pitch contour.  For 
pitch transition model, x  is compound of 2 parameters, 
difference between 1st pitch value of current syllable and 4th

pitch value of previous syllable, and difference between 2nd

pitch value of current syllable and 3rd pitch value of 

previous syllable.  x  of Duration target model has 1 
dimension , which is the duration of the phone unit. The 
duration difference between current phone and previous 
phone is used for duration transition model. For energy 
target model, two parameters are used. Which are the 
STEPS(Short Time Energy Per Sample) values of the first 
half and the second half of the phone unit. The difference 
of the first STEPS value of current phone and the second 
STEP value of the previous phone is used for energy 
transition model. 

Table 1. gives the leaves numbers of the corresponding 
trees. 

The sizes of the models are comparable with what we 
built for English and Chinese. Because few Iraqi-Arabic 
linguistic information can be collected, no special tuning on 
the sizes. For each leaf in the models, 1-3 Gaussian are 
generated as a mixture.  

In target models, ∑
=

iN

j

j
i

j
ii MPMxP

1
)()|( of each 

candidate segment can be pre-calculated. But the transition 
models are not so straightforward as the target models, 
because in transition models, ix  is generated dynamically 
according two consecutive segments in the searching path. 
In order to achieve same level CPU efficiency, vector 
quantization (VQ) is applied to generate a grid and the 

value of ∑
=

iN

j

j
i

j
ii MPMxP

1
)()|(  for each node in the grid 

is pre-calculated and saved. In runtime, for each x  in 
transition models, the value of the closest node in the grid 
can be retrieved. For both target and transition models, 

)( j
iMP  can be pre-calculated. So the CPU efficiency is 

kept in the same level as likelihood function based 
approach. 

4. EXPERIMENTS 

In the first experiment, 20 sentences were randomly 
selected from a test set which were excluded from the 
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Table 1: Leaf numbers of 6 decision trees 

110     Energy transition prediction 

104 Energy target prediction 

70     Duration transition prediction 

112 Duration target prediction 

190 Pitch transition prediction 

421     Pitch target prediction 

Leaf Number Tree Type 

3779



corpus of TTS voice. The 20 sentences were synthesized 
with two functions respectively, likelihood and posterior 
probability. In the final best path for each sentence, the 
ratios of each sub-cost to final cost were counted. Then the 
means and standard variances were calculated.  The results 

were listed in table 2. 
The results shows the ratios with likelihood function are 

very variable, but the ones with posterior functions are 
comparable. The standard variances of both results for each 
sub-cost are almost equal. It proves that the weight of sub-
cost isn’t correlated with parameters or sizes of the GMM 
models, which means the posterior probability function has 
advantages to reduce the negative impacts of the over-train 
issues and weight adjustment issues. The ratios of sub-costs 
are positively correlated with the sizes of decision tree 
although it is not such obvious linear correlation as we 
discussed before. It is understandable because that 
assumption we discussed is an extreme scenario which 
doesn’t exist in the real datasets. 

The second experiment was MOS evaluation with scale 
1-5 as usual. Only three listeners are available, and 100 
sentences were used as stimuli. The result was shown in 
Fig.2. The MOS was improved by 0.2. 

5. CONCLUSIONS 

This paper presents the recent result of posterior probability 
function based prosody modeling approach which is 

improved from likelihood function based prosody modeling 
approach. The disadvantages in the old approach and how 
the new approach solves the issues are analyzed. The 
experiment results show the new approach has great 
advantages on robustness, flexibility and overall quality.
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Table 2. Ratio/Variance of sub-cost to final-cost

0.148 ±0.009 0.165 ±0.015 Energy Transition 
0.168 ±0.015 0.176 ±0.019 Energy Target 

0.145 ±0.011 0.042 ±0.011 Duration Transition 
0.171 ±0.008 0.024 ±0.010 Duration Target 
0.188 ±0.031 0.216 ±0.043 Pitch Transition 
0.181 ±0.025 0.378 ±0.033 Pitch Target 

Posterior Likelihood 
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