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ABSTRACT

We propose a new optimization algorithm called Generalized Baum
Welch (GBW) algorithm for discriminative training on hidden
Markov model (HMM). GBW is based on Lagrange relaxation on a
transformed optimization problem. We show that both Baum-Welch
(BW) algorithm for ML estimate of HMM parameters, and the popu-
lar extended Baum-Welch (EBW) algorithm for discriminative train-
ing are special cases of GBW. We compare the performance of GBW
and EBW for Farsi large vocabulary continuous speech recognition
(LVCSR).

Index Terms— Speech recognition, discriminative training.

1. INTRODUCTION

Discriminative training is an important technique to improve recog-
nition accuracy for large vocabulary continuous speech recognition
(LVCSR) [1][2]. Common discriminative training algorithms in
speech recognition employ maximum mutual information (MMI)
estimation [1] and minimum phone error (MPE) [2]. While MMI
and MPE have different objective functions, they use the the ex-
tended Baum-Welch (EBW) algorithm [3] for optimization. In re-
cent years, large margin based approach gains popularity such as
[4] which shows promising results. However, on large scale system,
approaches based on lattices like MMI/MPE using EBW algorithm
remain to be the most popular methods.

One of the major challenges of discriminative training is opti-
mization. The objective functions used in discriminative training like
MMI/MPE can be unbounded. It is also the reason why EBW may
corrupt the acoustic model if it is not properly tuned and smoothed.
In this paper, we propose a new optimization algorithm called Gen-
eralized Baum Welch (GBW). GBW is based on Lagrange relaxation
[5] and the optimization is operated in a dual space. We show that
GBW does not have the unbound issue and it does not corrupt the
model due to improper tuning. More importantly, we show that both
Baum-Welch (BW) algorithm for maximum likelihood (ML) esti-
mate, and EBW for MMI/MPE estimate are special cases of GBW.
The formulation of GBW also gives us a new insight of EBW for-
mulation which is naturally understood in GBW framework.

This paper is organized as follows: in section 2, we review the
EBW algorithm and the MMI objective. In section 3, we formu-
late the GBW algorithm to generalize BW and EBW algorithm. In
section 4, we report experimental results on EBW and GBW. We
conclude our work and discuss future work in section 5.
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2. EXTENDED BAUM-WELCH ALGORITHM

The objective function for discriminative training, in its simplest
form, involves the difference between two log likelihood functions.
Consider the simplest case that we only have one reference and one
competitor, then,

F(X70):Q7(X70)_QC(X79)7 (1)

where Q@ = 37, 37 ve(5) [log [X5] + (¢ — 1) 37 (2 — 1)) is an
auxiliary function to represent the negative log likelihood. In which,
x is the observation; ~;(7) is the posterior probability of = being
at Gaussian j at time ¢. The function F' represents the difference
between the negative log likelihood of the reference, @, and the
competitor . on observation X = {x1,...,zr}. 0 is the model
parameter set including the mean vectors (u), covariances (3) and
mixture weights in a HMM. Minimization of F' is the same as maxi-
mizing the mutual information so this form of discriminative training
is also known as MMI estimation. MPE is based on the same princi-
ple but it has a more sophisticated objective function.

The function F' is non-convex and optimization of F' can be lo-
cal optimal. Another bigger problem of F' is the unbounded issue.
For example, if a Gaussian appears only as a competitor, optimiz-
ing the parameters of this Gaussian becomes a minimum likelihood
problem, which is unbounded. In general, if the denominator oc-
cupancy of a Gaussian is higher than its numerator occupancy, the
solution is unbounded. In sum, optimization of £’ is not trivial.

The idea of EBW is to add an additional auxiliary function to the
function F' to enforce convexity. That auxiliary function is required
to have zero gradient at the current parameter set [2]. Details of
EBW is available in [3] and the reestimation formula for mean y; is:

= S (G)ae — X2, v (G)xe + Djpd
! () =)+ Dy

where the subscript shows whether the term belongs to reference (1)
or competitor (c); D; is a constant chosen to guarantee the estimate
is valid (say, covariance must be positive definite). Comparing to
the Baum Welch algorithm which provides ML estimate for HMM,
EBW algorithm considers the competitors as well. [3] shows that
EBW algorithm converges when D — oo, where D is directly pro-
portional to the number of discrete distributions used to represent
a Gaussian in continuous space. It is the reason why EBW needs
D — oo to guarantee convergence.

In practice, we cannot choose D — oo, so EBW is not guar-
anteed to converge. In addition, the EBW reestimation formula in
equation 2 often leads to overtraining. Hence, smoothing technique
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such as I-smoothing [2], has been proposed. While EBW has been
proven successful in practice, it often involves careful tuning.

3. GENERALIZED BAUM-WELCH ALGORITHM

We introduce Generalized Baum Welch (GBW) algorithm in this
section. GBW algorithm uses Lagrangian relaxation on a trans-
formed optimization problem, and we optimize the parameters for
the dual problem which itself is a relaxed problem . GBW does not
have the unbounded issue and we can show that both BW and EBW
are special cases of GBW.

3.1. Checkpointing

As mentioned, optimizing the function F' can be unbounded to
some parameters. However, we can address the unbounded issue
by adding checkpoints to the problem,

G(X,0) = |Qr(X,0) = Cr[ +]Qc(X, 0) — Cc| ®)

where C. and C. are the checkpoints that we want @, and Q. to
achieve respectively. For this particular example, we choose the
checkpoints such that Q,(X,0) > C, and Q.(X,0) < C.. As
a result, by minimizing the function GG, we are maximizing the log
likelihood difference between the reference and the competitor, but
we only want them to achieve the checkpoints we have chosen. In
general, we have multiple files and each file has possibly multiple
competitors. Hence, the formulation becomes,

G(X,0) = |Qi(X,0) - Ci| . “

Note that this formulation is very flexible that we can represent ref-
erence and competitors at different granularity levels. Since we are
using a lattice based approach, each term in equation 4 corresponds
to a word arc. As a result, we have multiple terms for reference and
competing word arcs and each word arc has its own checkpoint. It
is also important to note that when each term corresponds to a word
arc, not every term has equal importance because of different poste-
rior count. To reflect this, one may add a weighting factor for each
term or scale the checkpoints. The formulas shown in this paper,
however, assume they have equal importance for simplicity, but it is
trivial to incorporate this information into the algorithm.

Although the function G remains to be non-convex, this formu-
lation has an obvious advantage over the original problem. The rea-
son is the unbounded issue no longer exists in this form, since G
must be larger than or equal to zero. One easy way to define the
checkpoints is to encourage higher likelihood for the reference word
arcs and lower likelihood for the competing word arcs. This scheme
is equivalent to MMI estimation.

3.2. Lagrange Relaxation
Assuming good checkpoints are given so that if our model can reach
those checkpoints, the model can achieve good performance. To
minimize the function GG, we may first transform the problem to,

min D€

€,0

st e > QZ(H) — Cz Vi

€ > Ci —Qi(0) Vi,

where € represents slack variables and ¢ is an index to a word arc.

This is equivalent to the original problem in equation 4 without con-
straints. We call this as the primal problem for the rest of this paper.
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For simplicity, we show the formulation for optimizing the mean
vectors, and this formulation also includes an optional regularization
using Mahalanobis distance on the means. We would like to empha-
size that this method also allows us to train covariances and the op-
tional regularization is not required for GBW to work. The primal
problem becomes,

min >, €

en

0
+> Djllus — w3l
J
st e > QZ(,LL) —-C; Yi

€ > Ci—Qi(pn) Vi, ()
where D; is a Gaussian specific constant to control the importance
of the regularization term; u? is the mean vector that we want GBW
to backoff to, and it is assumed to be an ML estimate here.

We can then construct the Lagrangian dual for the primal prob-
lem. The Lagrangian is defined as,

Lm(E,H,Q,B) = Zel_zaz(fz_Qz(H)+Cz)

i

- Zﬂi(ﬁi—ci-i-Qi(M))
+ > Djllus = uills, (©)
J

where {a;} and {3;} are the Lagrange multipliers for the first and
the second set of constraints of the primal problem in equation 5.
The Lagrangian dual is then defined as,

L”(a, B) = inf Lin (e, 1, o, B) ©)
€1
Now, we can differentiate L w.r.t. x and e. Hence,
OLm
= l-a; =0 8
e, i —f3 (®)
ALy, 0Q; 0 0
= i — i Dj——|lu; — wjlls;
£ Z:(a B )aﬂj + Jaﬂj [114 l’L]HzJ
= D (= B)(=2D ()T (@i — )
i t
+ D285 (py — pg)) - )
By setting them to zero, it implies,
o+ pi=1 Vi (10)
and,
(i — B )zt + Djpf
1y = B (a, B) = >l = Bi) 32, vi(G)wt + Djp; (11)

Yol = Bi) > viG) + Dy

and this is the GBW update equation for mean vectors.

BW algorithm is a special case of GBW, since if we disable the
regularization (D = 0) and set all « to one and (3 to zero for refer-
ence word arcs and o« = 3 = 0.5 for all competitors, we get

Wy = Zieref Zz 72(.7)%15

! Eieref >0 ()
which is the BW update equation. EBW is also a special case of
GBW, since if we set « equals one and 3 equals zero for all refer-

ence, and « equals zero and 3 equals one for all competitors, the
GBW update equation becomes EBW update equation,

[y = Zz‘eref Zt ’Y;L(])xff - Ziecom Zt ’ﬁ(])xz + DjU?
! Zieref 2o i) — Ziecom > 7)) + Dy
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One should note that this result implies the D-term used in EBW
can be considered as a regularization using Mahalanobis distance
between the mean vectors of the new and the ML model, and the
meaning is well represented.

If the optimization is performed on the covariance, the modifi-
cation to the primal problem is

mgnz € + ZD]- (tr(A;S; 1 Ay) + (B, By) + log [%5])
i J

€6 >Ci —Qi(X) Vi, (14)
where XY = A} Aj; MY = H?H?/ = B} Bj. Assuming both A and
B exist, we have this Lagrangian, L.,

Zei - Z%‘(Ei —Qi(X)+Cy)
- Zﬁi(ﬁi = Ci +Qi(X))

Lc(6727a76) =

+ > Di(tr(AGST A + tr(ByY; ' By)
J

+ log[%;]) . 15)

We then differentiate the L. w.r.t. the covariance,

8LC i/ . - — 0 —
oD GO BEHO IR
i t

7

+ Dyt -nyinst - nstMsY), 16)

where S{; = (2} — p;)(zf — p;)’. Then by setting it to zero, we
obtain the GBW update equation for covariance,
Ej = ‘Ilj (Oé, 5)
S (ai—Bi) Sy i) (@h—py) (zi—nj) +D; (29 +M3)
i —=B3) Xy i (1) +Dj ’

A7)

which is also a generalization of BW and EBW. Instead of solving
two independent optimization problems, one may use the parame-
ters obtained from the first problem as the solution for the second
problem to compute the covariances. This procedure assumes the
solutions of the two problems are similar and we adopt this proce-
dure in our experiments. One should also note that the formulation
of GBW can incorporate I-smoothing [2] easily as well.

GBW is the same as BW and EBW that it is based on the EM
algorithm. However, the M-step of GBW is replaced by solving a
dual problem to retrieve the Lagrange multipliers, so we can use
equation 11 and equation 17 to obtain the HMM parameters. The
dual problem is formulated by plugging equations 10, 11 and 17 back
to the Lagrangian. Assuming we are optimizing the mean vectors,
we have

max LD(a,B) = Z(ai = B:)(Qi(®(a, B)) — Ci)

a,B
s.t. Vi

i

Oéz-i-ﬁl :1andai,ﬁi20.

This dual problem can be solved by gradient ascent. By taking
derivative w.r.t. the Lagrange multipliers, we obtain the gradients.
We need an assumption that at each iteration, the parameters do not
move too far away. If this assumption holds, we can assume the de-
nominators of equation 11 and 17 are unchanged. Otherwise, the
gradient equation would couple with all the multipliers in the pro-
gram which would become computationally intractable. Finally, we
have,
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oL? 0Q; 0P
e = Qi —Ci+ %j(a; - ﬁ])zk: 9. g (9

and, 0Pi _ M
8011’ Zk(&, ﬁ)
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where Zy.(a, B) = 3, (i —3:) 3, 7i (k) + Dy, and it is considered
to be constant and we can obtain this value from the past iteration.
When «; is updated, (3; can be obtained using the constraint «; +

Bi = 1.
3.3. Convergence condition of EBW and GBW

This technique we use for GBW is known as Lagrange relaxation [5],
since it converts a primal problem into a dual problem. In theory, the
dual problem is always a convex problem (maximizing a concave
objective function here) [5]. Note that when strong duality does not
hold, which means the optimal value of the dual can only serve as a
strict lower bound to the primal objective, there is no guarantee that
the solution obtained from the dual is primal optimal. We can only
consider this technique as a relaxation method.

Consider when D — oo and this term dominates the objective
function, strong duality occurs and GBW is guaranteed to converge
in this case. Although the solution is simply the backoff model, this
behavior is the same as EBW. However, given a problem and a finite
D, if the solution of GBW is equivalent to BW or EBW, it can be
shown GBW is guaranteed to converge for this specific problem.
One should also note that the D constant in GBW is related to the
checkpoints. If the checkpoints are set more aggressively, that is
very high likelihood for reference word arcs and very low likelihood
for competing word arcs, GBW is very likely to reduce to EBW
(but it is possible to construct artificial cases that GBW does not
reduce to EBW). However, in such case, the € of the primal problem
becomes larger, and therefore, D has to be larger for regularization
to be effective. Hence, although we claim GBW must converge when
it reduces to EBW, this case is equivalent to having D — co.

4. EXPERIMENTAL SETUP

We evaluated the performance of GBW and EBW on a speaker inde-
pendent Farsi LVCSR system with 33K vocabulary. The Farsi sys-
tem was trained with more than 110 hours of audio data in force
protection and medical screening domain. The audio data can be
roughly divided into two categories: 1.5-way and 2-way data. 1.5-
way means basic question and answering and the sentences tend to
be simpler; 2-way data is conversational and it may have more com-
plicated or incomplete sentences. A development test set was se-
lected from the 2-way data set as we are interested in conversational
data. This development set consists of around 45 minutes of 2-way
data. For the test set, we selected the Farsi offline evaluation set
used in DARPA TransTac 2007 evaluation, which consists of around
2 hours of conversational data. We tuned the algorithms based on
the development set and tested on the test set at the end.

MMI objective was chosen for optimization. The checkpoints
were selected based on the model used in E-step, and they were set
to be 10% to 40% higher than the log likelihood of the reference
word arcs, and 10% to 40% lower of the competing word arcs. In
the M-step, we performed four iterations of gradient ascent to update
the dual variables. From the dual variables, we then reestimated the
Gaussian parameters. No regularization nor smoothing was used for
GBW in the first experiment.

The result in figure 1 shows that GBW without regularization
and smoothing can improve the baseline ML system. It shows GBW
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Fig. 1. Performance of GBW without regularization on dev set.

is reliable as it works even without regularization and smoothing.
On the contrary, EBW does not work when there is no regularization
or smoothing and it just corrupts the model. As the checkpoints
are set more aggressively, GBW gives more improvement at earlier
iterations but degrades afterwards.

Model initialization for GBW is important due to the EM frame-
work, one option is to initialize the dual variables such that it con-
forms to the ML model, that is BW initialization. Another option
is to initialize the dual variables with EBW after the first iteration
of EBW. Figure 2 shows the performance of GBW and EBW with
different settings. Although the figure only shows the first seven it-
erations, the experiment was performed with 16 iterations and no
improvement after the first seven iterations is observed for all algo-
rithms.

— — - BW (ML bassline
O GEW W/ reg (B init)
e GEW Wi reg (EBW init)
M EBW

iteration

Fig. 2. Performance of BW, EBW and GBW on dev set.

When GBW is initialized as EBW, GBW outperforms EBW at
all iterations. GBW with BW initialization lags behind EBW at the
earlier stages of the training since GBW is close to ML at the be-
ginning, but GBW can obtain the same performance of EBW at the
end. When BW initialization is used, in addition to the figure, GBW
without regularization and smoothing gives more improvement at
the early stages compared to the one with regularization. However,

it over trains the system very soon due to the aggressiveness when
regularization is not used.

Table 1 summarizes the WER performance of EBW and GBW
on the test set. Both EBW and GBW make significant improvement

[ algo [ objfunc [ dev [ test |

BW ML 50.7% | 50.2%
EBW MMI 46.7% | 46.5%
GBW MMI 46.0% | 45.8%

Table 1. WER of BW, EBW, and GBW on dev set and TransTac
2007 Farsi offline evaluation set.

over the baseline ML model and GBW performs slightly better than
EBW.

5. CONCLUSION AND FUTURE WORK

We presented generalized Baum-Welch algorithm for discriminative
training. We showed that the common BW and EBW algorithms
are special cases of GBW. Unlike EBW, GBW uses a checkpoint-
ing technique to address the unbound issue, and GBW works even
without regularization. Preliminary experiments also showed that
GBW can improve BW and EBW algorithm. More experiments on
the checkpoints, and the training procedure are needed in order to
understand the behavior of this algorithm.

The formulation of GBW helps us to understand EBW better.
We learn that the regularization and smoothing of EBW can be rep-
resented as a distance based regularization to the primal objective.
Regularization and smoothing are not always necessary for GBW,
but these methods improve the performance.
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