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ABSTRACT 

This paper presents a Bayesian learning approach to large 
margin classifier for hidden Markov model (HMM) based 
speech recognition. We build the Bayesian large margin HMMs 
(BLM-HMMs) and improve the model generalization for 
handling unknown test environments. Using BLM-HMMs, the 
variational Bayesian HMM parameters are estimated by 
maximizing lower bound of a marginal likelihood over the 
uncertainties of HMM parameters. The Bayesian large margin 
estimation is performed with frame selection mechanism, and is 
illustrated to meet the objective of support vector machines, i.e. 
maximal class margin and minimal training errors. The new 
objective function is not only interpreted as a discriminative 
criterion, but also feasible to deal with model selection and 
adaptive training. Experiments on phone recognition show that 
BLM-HMMs perform better than other generative and 
discriminative models. 

Index Terms— Bayesian learning, model generalization, 
large margin classifier, hidden Markov models

1. INTRODUCTION 
Support vector machines (SVMs) [11] are known as a 

powerful mechanism for general pattern recognition, and have 
been successfully applied for speech recognition [6]. SVMs 
perform the large/maximum margin classification using the 
kernel features and support tokens, and are also called the 
sparse kernel machines [2]. The principle of SVMs is to 
maximize the minimum misclassification margin. The correct 
classification can be made when a new sample falls near margin 
region. The margin is surrounded by support vectors. In [6][10], 
the large margin HMM (LM-HMM) parameters was estimated 
for large margin classification of speech signal. Using LM-
HMMs, the support tokens, which are correctly classified, are 
selected to adjust the decision boundaries, and so those 
correctly recognized utterances leave away boundaries as far as 
possible. LM-HMMs were presented to improve the 
generalization of discriminative training using the minimum 
classification error (MCE) method [7]. In LM-HMMs, some 
empirical parameters in sparse learning procedure should be 
tuned. The learning method using the generalized probabilistic 
descent algorithm is prone to converge at local optimum. 

To activate the capabilities of model regularization and 
adaptive learning [14], we are motivated to introduce the 
Bayesian theory into the large margin classification [8], and 
present the Bayesian large margin (BLM) classifier for HMM-
based speech recognition. In this BLM-HMM framework, the 

margin is seen as a logarithm of ratio of posterior distributions 
of target model to competing model. A variational Bayesian 
inference [1][2][12] is developed to establish the large margin 
classifier by decomposing the variational models due to 
different HMM parameters and latent variables. The graphical 
models of BLM-HMM and its variational models are 
demonstrated. A new objective function is constructed for 
model training from the sequence data and is illustrated to meet 
the properties of SVMs. In the experiments, we conduct the 
evaluation of speech recognition by using TIMIT database and 
obtain the improvement of proposed BLM-HMMs compared to 
the maximum likelihood HMMs (ML-HMMs), the MCE-
HMMs and the LM-HMMs. 

2. LARGE MARGIN HMMS 
In a standard speech recognizer, we choose the most likely 

word sequence corresponding to an input utterance 
}{ 21 T,,,X xxx  by the maximum a posteriori decision
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where  is the acoustic model and )(Wp  is the language 
model that we don’t consider in this work. The discriminant 
function is specified by ),|(log WXp . In a LM classifier, the 
separation margin of an utterance iX  with true word identity 

iW  is defined as a log likelihood ratio of discriminant functions 
of true model to the most competing model 

)|(logmax)|(log)(
,LM j

Wj
i Wi

ijW
Wii XpXpXd        (2) 

where W  denotes the space of word sequence. If 0)( iXd ,
the classification is correct; otherwise a wrong decision is made. 
LM-HMM parameters }{LM i  [6][10] are trained by 
selecting the support tokens from training utterances D with a 
preset positive number 

})(0and|{ LMLM iii XdDXX              (3) 
and maximizing the minimum margin due to support tokens by 
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The selected tokens are correctly classified, and relatively close 
to the separation boundary. This minimax optimization 
performs the so-called sparse learning since only support 
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tokens are put into model training. Accordingly, LM-HMMs 
fulfill the spirit of SVMs [11], which are popular in many 
pattern recognition applications. In (4), the optimization is 
approximated by considering the margin with smoothing 
parameter  significantly larger than 1. 

Considering the continuous-density HMMs with state 
observation probability )|( ip x , Ii1 , composed of a 
mixture of K Gaussian densities 
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the discriminant function of an input utterance }{ tX x  is 
produced by 
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where },,,,{ ikikikimi ra  are the initial state probabilities, 
transition probabilities, mixture weights, mean vectors and 
precision matrices, respectively. Here, the Viterbi 
approximation is applied by adopting the decoded state 
sequence }ˆ{ˆ

tsS  and mixture component sequence }ˆ{ˆ
tlL .

The objective function in (4) can be expanded for optimization. 
To avoid the unlimitedly increasing margin, Jiang et al. [6] 
imposed the limitations of linear and quadratic terms in 
objective function and derived the LM-HMM parameters based 
on the penalized gradient descent algorithm. The imposed 
constraints acted as the penalization terms in the extended 
objective function. Starting from the seed model trained by 
MCE algorithm [7], an iterative optimization procedure is 
performed to find LM-HMM parameters [6]. 

3. BAYESIAN LARGE MARGIN HMMS 
In general, LM-HMMs are trained as the point estimates, where 
the model uncertainties are not considered. However, in real-
world applications, we suffer from the problems of ill-posed 
modeling and environmental mismatch between training and 
test data [3]. The static LM-HMM parameters are not fitted to 
the unknown variations in test environments. The model space 
and the model complexity are not well controlled. To deal with 
the issue of model adaptation and selection [4][5][12], we are 
motivated to develop a Bayesian framework for LM-HMMs. 

3.1. Bayesian large margin estimation 
From Bayesian viewpoint, the model uncertainty is 

considered in expressing the separation margin. The model 
parameters of Bayesian LM-HMMs (denoted by BLM-HMMs) 

BLM  are estimated by a minimax procedure according to a 
Bayesian criterion based on the posterior distributions 
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where the set of support tokens BLM  is collected similar to (3) 
except that the posterior distribution is adopted in calculation of 
separation margin )(BLM iXd . The smoothing parameter  in 
LM estimation (4) is neglected in BLM estimation (7). The 
model uncertainty, which is characterized by a prior density, is 
merged in the posterior distribution. However, the true 

posterior distribution with latent variables is unknown in 
speech recognition. We can apply the variational Bayesian (VB) 
method [1][2][12][13] and use a variational distribution 

)|( Xq W  to approximate the true distribution )|( Xp W . The 
variational distribution is estimated by an approximate 
inference method through the maximization of a lower bound 
of logarithm of marginal likelihood. The lower bound is 
obtained via the Jensen’s inequality as given by [2][12] 

.)|,(log),,(
)|(

)()|,,(
log)|,()|(

)|,,(
)()|,,(

log)|,,(

)()|,,(log)(log

,

,

,

,

LS

W
LS W

WW
W

W
W

WW

LS
W

LS
WWW

XLSqXLSq

d
Xq

pLSXp
XLSqXq

d
XLSq
pLSXp

XLSq

dpLSXpXp

 (8) 

In (8), the factorization )|()|,()|,,( XqXLSqXLSq WW  is 
applied with ),( LS  being latent variables. By taking 
differential of right hand side of (8) with respect to )|( Xq W

and setting it to zero, we obtain the optimal variational model 
)|(~ Xq W  which approximates the true model )|( Xp W  with 

the smallest Kullback-Leibler divergence [2]. As a result, 
BLM-HMMs are implemented by inferring a new discriminant 
function )|(~ Xq W  attaining a lower bound and maximizing 
the function to fulfill the minimax estimation in (7). At the 
same time, the variational posterior distribution )|,(~ XLSq  can 
be calculated. Due to the incomplete data problem in HMMs, 
the expectation-maximization (EM) steps should be performed 
to update the current estimate  to new estimate  in an VB-
EM procedure [1][12][14]. 

3.2. Implementation in BLM-HMMs 
In the variational inference, we specify the prior densities of 

parameters i , ima  and ik  to be Dirichlet densities with 
hyperparameters i , im  and ik , respectively, and the prior 
density of Gaussian mean ik  and precision ikr  to be a normal-
Wishart density 
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with hyperparameters 1dik , 0ik , ik  being 1d , and 

iku  being dd  and positive definite [4]. By combining the 
likelihood function in (6) and the conjugate prior in (9), the 
posterior distribution )|( Xp  can be written as a product of 
posterior distributions for individual HMM parameters. Here, 
we infer the variational posterior distribution )|( Xq , or 
equivalently infer the variational distributions for four sets of 
HMM parameters )},(,,,{ ikikikimi ra . The variational 
inference proceeds by maximizing the lower bound in (8) with 
respect to )|( Xq . The optimal VB distribution is inferred by 
[12]

}),,,,,,{|()|(~
ikikikikikimi umpXq
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which combines the prior density and the likelihood measure 
calculated by the variational occupation probability model 

)|,(~ XLSq . The variational distributions )|}({~ Xq i ,
)|}({~ Xaq im  and )|}({~ Xq ik  with new hyperparameters 

}~,
~

,~{ ikimi  can be found in [12]. We focus on the variational 
inference for Gaussian means and precisions },{ ikik r , and 
optimize the minimax criterion in (7) which can be expressed as 
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where BLM  is the set of support tokens in BLM-HMM 
training and ),|,(~~ Xklisq tttik  denotes the variational 
occupation probability of tx  staying at state ts  and mixture 
component tl  by using current estimate . This variational 
distribution is expressed as a product of normal-Wishart 
distributions with the updated hyperparameters 
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In (12)-(15), the support vector tokens are considered in 
updating procedure. The BLM-HMM parameters are obtained 
by maximizing the variational distribution  )|,(~ Xrq ikik  and 

finding ikik m~ˆ  and ikikik udr ~)~(ˆ 11  [4]. The graphical 
representations of BLM-HMM and its variational model are 
illustrated in Figures 1 and 2, respectively. In addition, the 
variational occupation probability )|,(~ XLSq

)}|,(~{ Xklisq tt  is calculated in a VB-EM procedure 
[1][12][14]. In [12], the forward-backward algorithm was 
developed to calculate the variational occupation probability in 
HMMs. This study applies the Viterbi algorithm to decode the 
best state sequence }ˆ{ˆ

tsS  and mixture component sequence 

}ˆ{ˆ
tlL  by using variational posterior distributions )|(~ Xq .

The Viterbi approximation is realized by 
)ˆ()ˆ()|,(~~ klisXklisq tttttik .

3.3. Relations to SVM objective function 

Importantly, we focus on developing BLM classifier for 
HMM-based speech recognition. In [8], the evidence 
framework of SVMs was addressed with a Bayesian 
interpretation of large margin classification. Here, we select 
support tokens by investigating BLM distance of }{ itiX x
calculated by variational posterior distributions from two word 
models iW  and jW . The distance at each frame itx  is yielded 
by
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If 0)(BLM it
ijd x , itx  is correctly recognized. If 0)(BLM it

ijd x ,

itx  is misclassified. The support tokens for BLM classifier are 
selected from training data as in (3). Such a sparse learning 
process is comparable of implementing the variational 
occupation probability by a soft approximation [8] 

)exp())]([exp()|,(~
BLM tit
ij

ittt dklisq xx   (17) 
where 0if][ bbb  and 0if0][ bb . This is different 
from the hard approximation by Viterbi algorithm. In (17), t

is defined as a misclassification measure or the training error 
due to a frame itx . With this equation, the objective function 
for training Gaussian parameters ),( ikik r  of BLM-HMMs in 
(7) is rewritten as a variational distribution and can be related to 
SVM objective function by 
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Maximizing the variational posterior distribution with Gaussian 
mean and precision is equivalent to jointly minimizing the 
Mahalanobis distances using the updated hyperparameters and 
the sum of training errors [5][8]. The negative distance is 
known as a class margin. The discrimination information from 
incorrectly recognized samples is applied to assure good 
performance of using BLM-HMMs in speech recognition.
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Figure 1 Graphical model of BLM-HMM 
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Figure 2 Graphical model of variational BLM-HMM 

4. EXPERIMENTS 
4.1. Experimental setup and implementation 
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In the experiments, the proposed method was evaluated by 
phone recognition using TIMIT database. There were 39 phone 
models trained by the maximum-likelihood (ML) method by 
using HTK tools. The 39-dimensional feature vector was 
extracted for each frame and was composed of 12 MFCCs and 
one log energy, and their first and second derivatives. 4614 
utterances were selected as training data, and 1680 utterances 
were used as test data. Each phone was represented by a three-
state HMM. The number of mixture components was changed 
to be 4, 8 and 16 for evaluation. The covariance matrix was 
assumed to be diagonal. For comparative study, MCE 
discriminative training [7] was implemented with a learning 
rate selected in a range between 0.002 and 0.004. The estimated 
MCE-HMMs were used as the seed models for training of LM-
HMMs and BLM-HMMs. The initial hyperparameters in BLM-
HMMs were selected from the optimal HMM estimates using 

ikik n , ikik nd , ikikm ˆ  and -1
îkikik rnu , where ikn

is the number of frames staying at component k and state i  in 
last iteration of Viterbi decoding. The variational inference was 
performed for Gaussian parameters while the remaining HMM 
parameters was unchanged. The parameter  in selection of 
support tokens in LM-HMMs and BLM-HMMs was specified 
by )5.0log( in  where in  denotes the number of frames in 

iX . Using BLM-HMMs, the VB-EM procedure [1][14] was 
implemented by updating the variational occupation probability 

tik
~  and the hyperparameters of variational distributions 

ikikikik um ~,~,~,~  in EM iterations. The convergence was met 
when the improvement rate of variational distributions 

)|},({~ Xrq ikik  was less than 1%. 

Table 1 Comparison of phone error rates of HMMs trained by 
ML, MCE, LM and BLM methods 

 ML MCE LM BLM 
4K 40.51% 39.97% 39.34% 38.36% 
8K 39.17% 38.49% 38.27% 37.29% 

16K 38.27% 37.58% 37.45% 36.43% 

4.2. Experimental results 
Table 1 compares the phone error rates by using different 

training criteria; ML, MCE, LM and BLM. The number of 
mixture components K in each HMM state is changed in the 
evaluation. We find that the discriminative training methods by 
MCE and LM consistently outperform baseline ML method. 
LM obtained slight improvement compared to MCE. Among 
these four training algorithms, the lowest phone error rate 
36.43% is obtained by BLM-HMMs with 16 mixture 
components. The error reduction of BLM-HMMs compared to 
LM-HMMs is 2.72%, which is not significant. One reason is 
that the initial hyperparameters and the BLM-HMM parameters 
were calculated from the same training data. No validation data 
was used. Also, the initial hyperparameters were empirically 
determined. Such hyperparameters did not provide too much 
prior information for characterizing the variations in test 
environments. The improvement should be significant if the 
hyperparameters are estimated according to MacKay’s evidence 
framework [8][9][14] and learned from the adaptation data. 

5. CONCLUSIONS 
This paper presented a Bayesian learning method for large 

margin HMM based speech recognition. The variational Bayesian 
approach was applied to build the empirical posterior distribution 
from training data. Importantly, the mechanism of SVM was 
embedded for sparse learning of HMM parameters. The 
preliminary experiments on TIMIT phone recognition showed the 
improvement by using BLM training compared to ML, MCE and 
LM training. The performance was considerably affected by the 
prior parameters. In the future, we are extensively evaluating the 
contributions of the margin and the priors and examining the 
performance in noisy speech recognition. We will develop the 
BLM-HMM adaptive training where the prior information is 
estimated from new training data, and also the BLM-HMM model 
adaptation where the model parameters are updated by using 
adaptation data. Due to the benefits of Bayesian learning, we will 
present the model selection solution to control the HMM structure 
and the goodness of support tokens in BLM-HMMs. The kernel 
method applied to BLM-HMMs shall be also investigated. 
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