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ABSTRACT
Acoustic models used in hidden Markov model/neural-network
(HMM/NN) speech recognition systems are usually trained with
a frame-based cross-entropy error criterion. In contrast, Gaussian
mixture HMM systems are discriminatively trained using sequence-
based criteria, such as minimum phone error or maximum mutual in-
formation, that are more directly related to speech recognition accu-
racy. This paper demonstrates that neural-network acoustic models
can be trained with sequence classification criteria using exactly the
same lattice-based methods that have been developed for Gaussian
mixture HMMs, and that using a sequence classification criterion in
training leads to considerably better performance. A neural network
acoustic model with 153K weights trained on 50 hours of broadcast
news has a word error rate of 34.0% on the rt04 English broad-
cast news test set. When this model is trained with the state-level
minimum Bayes risk criterion, the rt04 word error rate is 27.7%.

Index Terms— speech recognition, neural networks, discrimi-
native training

1. INTRODUCTION

There are a number of arguments why neural networks are a useful
alternative to Gaussian mixture models (GMMs) for acoustic mod-
eling in speech recognition. First, neural networks make minimal
assumptions about the distribution of the input features, allowing for
significant flexibility in front-end feature extraction. Second, evi-
dence from multiple feature streams can be easily combined in a
single HMM/NN recognition system because neural networks can
estimate posterior probabilities. Third, neural network training crite-
ria are discriminative, while the maximum likelihood criterion com-
monly used for GMM acoustic models is not. With the recent de-
velopment of discriminative training algorithms for GMM acoustic
models [1, 2, 3], this third argument is less compelling than it used to
be. In fact, GMMs may enjoy an advantage because the criteria used
for discriminatively training them are based on sequence classifica-
tion, while the most common criterion for training neural network
acoustic models is based on frame classification. Criteria based on
sequence classification are more closely related to word error rate
than criteria based on frame classification, and should provide better
speech recognition performance.

Algorithms for training HMM/NN systems to discriminate be-
tween sequences have been proposed before. Alphanets [4] view
the HMM as a recurrent neural network in which the maximum
mutual information (MMI) criterion is optimized through gradient
descent, and backpropagation in the HMM takes exactly the same
form as the backward pass in EM training. The tasks to which Al-
phanets were applied were small enough that the contribution of the

competing hypotheses to the gradient could be computed through a
forward-backward pass using a phone-loop grammar. The REMAP
algorithm [5] maximizes the a-posteriori probability of the reference
word sequence, and relies upon sum-to-one constraints to penalize
competing, incorrect hypotheses. Other studies [6, 7] demonstrate
the effectiveness of global normalization and conditional maximum
likelihood (CML) training (equivalent to MMI for a fixed language
model) on TIMIT phone recognition and broad class recognition.

The work presented in this paper extends the prior work in two
ways. First, it uses word lattices to compactly represent the refer-
ence and the competing hypotheses, making it possible to train on
large-vocabulary tasks with large training sets. Second, it shows that
criteria other than MMI, such as state-level minimum Bayes risk,
can be optimized. The rest of the paper is organized as follows.
Section 2 reviews the use of the frame-based cross-entropy criterion
in neural network training. Section 3 shows how sequence classifi-
cation criteria may be optimized using the lattice-based framework
developed for discriminatively training GMM acoustic models. Sec-
tion 4 describes the experimental conditions, baseline results, and
discriminative training results. Section 5 summarizes the findings of
this study and discusses future work.

2. THE CROSS-ENTROPY CRITERION

Let the training set be a collection of acoustic feature sequences,
Xr , and corresponding word-level transcripts, Wr . For each train-
ing sample (Xr, Wr), there is also a label sequence, Ŷr , of the same
length as Xr , which specifies for each time t a multinomial distri-
bution, ŷrt over N physical states. Typically, the labels are “hard,”
ŷrt(i) ∈ {0, 1}, i = 1, · · · , N , and are defined either by manual la-
beling (e.g., TIMIT) or through forced alignment. In some cases the
labels may be “soft,” ŷrt(i) ∈ [0, 1], i = 1, · · · , N , having been de-
rived from a forward-backward pass over a reference transcript or
lattice. Tr denotes the length of the r-th sequence in the training set.

The cross-entropy criterion is

LXENT (θ) =
R∑

r=1

Tr∑

t=1

N∑

i=1

ŷrt(i) log
ŷrt(i)

yrt(i)
, (1)

where θ denotes the parameters of the neural network (weights and
biases for all layers) and yrt(i) is the network output for physical
state i at time t in sample r.

In training, an error backpropagation procedure adjusts θ to min-
imize LXENT (θ). When the cross-entropy criterion is used with a
network having a softmax output nonlinearity,

yrt(i) =
eart(i)

∑N
j=1 eart(j)

, (2)
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where the inputs to the softmax (activations) are denoted art,
gradient-descent training can be based on a convenient expression
for the derivative of the loss with respect to the activations:

∂LXENT (θ)

∂art(i)
= yrt(i) − ŷrt(i). (3)

3. SEQUENCE CLASSIFICATION CRITERIA

There has been considerable interest in discriminative training meth-
ods for Gaussian mixture HMMs in recent years. One approach to
discriminative training, which has been quite successful for large-
vocabulary tasks, relies on lattices to compactly represent the space
of competing hypotheses [1] and uses extended Baum-Welch (EBW)
updates with appropriate smoothing to train model parameters.
While this framework was originally developed for the MMI crite-
rion [8], other criteria have been developed around it, including min-
imum phone error (MPE) [3], minimum Bayes risk (MBR) [9, 10],
and a maximum-margin criterion [11].

Let LSEQ(θ) be any sequence classification criterion (e.g.,
MMI, MPE or MBR). Note that in some cases these criteria are for-
mulated as objective functions to be maximized instead of loss func-
tions to be minimized. In such cases, a loss function is derived by
multiplying the original objective function by −1. The expected oc-
cupancies γNUM

rt (i) and γDEN
rt (i) for each physical state required

by the EBW updates are computed with forward-backward passes
over the numerator and denominator lattices, respectively. Recall
that the numerator lattices represent the reference transcriptions and
the denominator lattices represent competing hypotheses.

These expected occupancies are also related to the gradient of
the loss with respect to state log-likelihoods [3]:

∂LSEQ

∂lrt(i)
= κ

(
γDEN

rt (i) − γNUM
rt (i)

)
, (4)

where lrt(i) is the log-likelihood of physical state i at time t in
sample r and κ is the acoustic scaling used in the lattice genera-
tion and forward-backward passes to improve generalization. In an
HMM/neural network hybrid, lrt(i) = log yrt(i) − log p(i), where
p(i) is the prior probability of state i, computed from the training
set. By the chain rule,

∂LSEQ

∂yrt(i)
= κ

γDEN
rt (i) − γNUM

rt (i)

yrt(i)
. (5)

Applying the chain rule and some algebra, derivatives with respect
to the softmax activations, like Equation (3), are

∂LSEQ

∂art(i)
= κ

(
γDEN

rt (i) − γNUM
rt (i)

)
. (6)

To a factor of κ, Equations (3) and (6) are nearly identical, with
the lattice-based denominator and numerator counts, γDEN

rt (i) and
γNUM

rt (i), in Equation (6) taking the place of the estimated and ref-
erence posteriors, yrt(i) and ŷrt(i), in Equation (3). This provides a
simple recipe for training neural-network acoustic models using any
of the sequence classification criteria developed for Gaussian mix-
ture HMMs in the lattice-based EBW framework: the gradient with
respect to the cross-entropy criterion is replaced with the gradient
with respect to the sequence-classification criterion (Equation (5) or
Equation (6)), and backpropagation is run as usual.

Equation (6) is not new [4, 7]. What is new is the adoption of
lattices to represent the reference and competing hypotheses, and the
use of sequence classification criteria other than MMI and CML for
neural-network training.

4. EXPERIMENTS

Sequence classification training for neural network acoustic mod-
els is evaluated on an English broadcast news transcription task by
comparing the performance of models trained with the frame-based,
cross-entropy error criterion to that of models trained with the state-
level minimum Bayes risk (sMBR) criterion [9, 10, 12],

LsMBR(θ) =
R∑

r=1

∑

W∈Wr

P (Xr|W, θ)κP (W )d(Y, Ŷr)

∑

W∈Wr

P (Xr|W, θ)κP (W )
, (7)

where Wr is the set of word hypotheses represented by the denomi-
nator lattices for sample r, Y is the label sequence for word hypoth-
esis W , and Ŷr is the label sequence for the reference. d(Y, Ŷr) is
the Hamming distance between the label sequences if the reference
labels are hard [10]; otherwise, it is defined as in [12]. The sMBR
criterion was chosen over MMI and related criteria [11] because it
had the best performance in pilot experiments. Results are also pro-
vided for Gaussian mixture acoustic models as a point of reference.
The acoustic model training set comprises 50 hours of data from the
1996 and 1997 English Broadcast News Speech corpora (LDC97S44
and LDC98S71), and was created by selecting entire shows at ran-
dom. The EARS Dev-04f set (dev04f), a collection of 3 hours of
audio from 6 shows collected in November 2003, is used for system
development. The EARS RT-04 test set (rt04), a collection of 6
hours of audio from 12 shows collected in December 2003, is used
for system evaluation.

The acoustic features are 19-dimensional PLP features with
speaker-based mean and variance normalization. Aside from the
normalization, the features are speaker-independent. For the train-
ing data, speaker labels are provided in the reference transcripts,
while for test data the “speakers” are actually clusters of segments
produced by an automatic diarization system [13]. Phones are mod-
eled as three-state, left-to-right HMMs with no skip states. States
are quinphone context-dependent, except for silence states, which
are context-independent. The decision trees that cluster contexts
into states are trained to maximize likelihood gain with single-
Gaussian, diagonal covariance models, modeling 40-dimensional
features computed from a linear discriminant analysis (LDA) pro-
jection of vectors computed by splicing 9 frames of normalized
PLP features. Recognition is done using a dynamic decoder sim-
ilar to the one described in [14], but which uses a statically com-
piled and minimized word network, allowing for multiple pronunci-
ations and contexts spanning more than one word. The language
model used for decoding is a 54M n-gram, interpolated backoff
model trained on a collection of 335M words from the follow-
ing sources: 1996 CSR Hub4 Language Model data (LDC98T31),
EARS BN03 closed captions, GALE Phase 2 Distillation GNG Eval-
uation Supplemental Multilingual data (LDC2007E02), Hub4 acous-
tic model training transcripts (LDC97T22 and LDC98T28), TDT4
closed captions (LDC2005T16), TDT4 newswire (LDC2005T16),
GALE Broadcast Conversations (LDC2005E82, LDC2006E33,
LDC2006E84, LDC2006E91, LDC2007E05, and LDC2007E45),
and GALE Broadcast News (same catalog numbers as GALE Broad-
cast Conversations). The source-specific LMs in the interpolation
are 4-gram models with modified Kneser-Ney smoothing. The
recognition lexicon contains 84K word tokens, with an average of
1.08 pronunciation variants per word. Where possible, pronuncia-
tions were based on PRONLEX (LDC97L20).

The neural network acoustic models are multilayer perceptrons
with a single hidden layer and full connectivity between layers. The
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model # states WER

NN 126 39.9
192 36.8
256 36.5
384 35.7
512 35.7

GMM 126 44.9
192 41.9
256 41.1
384 40.4
512 39.2
640 39.0
768 38.7
896 38.8

Table 1. dev04f word error rate (WER, stated as a percentage)
as a function of the number of context-dependent states used in the
model, for both neural networks and GMMs. Note that 126 states
corresponds to context-independent modeling.

input is a sliding window of 9 frames on the normalized PLP fea-
tures. The hidden units use logistic nonlinearities, while the out-
put layer is a softmax nonlinearity with the output units correspond-
ing to context-dependent HMM states. This network structure was
chosen because it is fairly standard in neural-network acoustic mod-
eling [15, 16]; any other network for which error backpropagation
training is possible, including recurrent neural networks, could also
be used. Training with both criteria, cross-entropy and sMBR, is
done using on-line stochastic gradient descent, with a weight update
after the presentation of each utterance. The order in which utter-
ances are visited is randomized. After each pass over the training
data, the loss is measured on a held-out set (a sample of 10% of the
full training set, with selection of entire shows). If a pass over the
data increases the held-out loss, the weights revert to their previous
values and, if additional training is to be done, the step size is mul-
tiplied by 0.5 [15]. Training halts after the step size is reduced five
times. The initial step size is chosen to optimize word error rate on
dev04f. The networks contain roughly 153K weights: a small size
that allows for fast-turnaround experiments.

The GMMs use 40-dimensional features computed from an
LDA+MLLT (LDA followed by a maximum-likelihood linear trans-
form) projection of 9 spliced frames of normalized PLP features.
The LDA discriminates between context-dependent states, and semi-
tied covariance updates using a single, global class are interleaved
with standard HMM updates to diagonalize the original LDA pro-
jection. Baseline HMM training is maximum-likelihood (ML), us-
ing a fixed, state-level alignment of the training data. The GMMs use
2048 mixture components, for a total of 165K trainable parameters.

The setup for discriminative training is quite similar to that
in [12]. For each utterance, a lattice with fixed state alignments is
used to represent the set of competing hypotheses used in the loss
function optimization. Accumulation of denominator counts is done
through forward-backward passes over the phone-marked training
lattices [2]. The reference for each utterance is a Viterbi alignment of
the reference word transcript. Training of the neural network models
uses error backpropagation as described above. The GMM models
are trained using EBW updates with E = 2.0 and cancellation of the
numerator and denominator statistics [11]. I-smoothing is performed
with τ = 500, using the models from the previous training iteration
as a prior [11]. For both the neural network and GMM models, the

Fig. 1. dev04f performance as a function of discriminative training
iteration for neural networks and GMMs.

number of iterations of discriminative training is chosen to optimize
word error rate on dev04f. Note that the neural network and GMM
discriminative training procedures use exactly the same routines for
the collection of denominator counts.

4.1. Baseline results

The first experiments determined the best number of context-
dependent states to use in the neural network and GMM acoustic
models. Results are summarized in Table 1. The minimum num-
ber of states, 126, is determined by the use of 42 phones and 3-state
HMMs. As the number of context-dependent states increases, the
size of the hidden layer in the neural networks decreases and the
number of Gaussian mixtures per state in the GMMs decreases, to
keep the number of trainable parameters constant. Both neural net-
works and GMMs show a similar pattern: performance improves as
the number of states increases, until a plateau is reached. Neural net-
work models reach this plateau earlier than GMMs, possibly because
the discriminative training criterion used with the neural networks
compensates for incorrect modeling assumptions.

4.2. Discriminative training results

In the second set of experiments, a single neural network model and
a single GMM model are trained to optimize the state-level mini-
mum Bayes risk criterion. The neural network with 384 states and
the GMM with 768 states were selected as models that had the best
tradeoff between dev04f word error rate and model complexity.
The results of these experiments are summarized in Figure 1. The
recognition performance for both models improves with discrimina-
tive training, with the neural network improving from 35.7% WER
to 29.8% and the GMM improving from 38.7% WER to 31.8% on
dev04f. It is not surprising that the GMM improves more than
the neural network because the GMM baseline is trained with the
maximum-likelihood criterion, while the neural network baseline is
trained with a frame-based, discriminative criterion. Both models
appear to be overtrained by the eighth iteration of sMBR training.
Because the sMBR training entails a realignment of the training data,
further cross-entropy training of the neural network using the new
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model criterion WER

NN XENT 34.0
sMBR 27.7

GMM ML 36.7
sMBR 28.9

Table 2. rt04 word error rate (WER) for neural networks and
GMMs with baseline and sequence classification (sMBR) training.

alignments was also tried. The best dev04f improvement from this
additional training was only 0.2%, from 35.7% WER to 35.5%. The
results in Figure 1 are obtained with acoustic scaling factors that
were optimized on the baseline systems. After sMBR training, the
optimal scaling for both models was reduced. The best scaling for
the neural network dropped from 0.14 to 0.11, improving dev04f
performance from 29.8% WER to 29.1%, and the best scaling for the
GMM dropped from 0.07 to 0.06, improving dev04f performance
from 31.8% WER to 31.4%.

Finally, the baseline and sMBR-trained neural network and
GMM acoustic models were tested on rt04, using the best acous-
tic weights from the dev04f experiments. The results, which are
provided in Table 2, are consistent with the results obtained on
dev04f. Training with a sequence classification criterion (sMBR)
greatly improves performance compared to either the frame-based,
cross-entropy criterion used with neural networks or the maximum
likelihood criterion used with GMMs. The GMM enjoys a larger
absolute improvement in performance with sMBR training than the
neural network because the GMM baseline is not discriminatively
trained, while the neural network baseline is. The sMBR-trained
neural network outperforms the sMBR-trained GMM, although this
comes at the cost of significantly more training time.

The small model size used in these experiments leads to higher
word error rates than are achieved by the best systems for this task.
A standard HMM system with 50K mixture components and the
same features has an rt04 word error rate of 25.3% [11], which
is better than any of the results reported here, but uses 24 times as
many parameters. The neural network is also underparameterized,
using roughly 120 frames of training data per weight when 10–40
frames/weight is preferable [16]. It is not clear if the NN systems
would continue to outperform the GMM systems as the number of
parameters is increased.

5. CONCLUSIONS

Neural network acoustic models can be trained with sequence clas-
sification criteria instead of frame classification criteria using ex-
actly the same lattice-based framework developed for discrimina-
tively training GMM acoustic models, and the use of a sequence-
based criterion (sMBR) in training leads to a substantial improve-
ment in word error rate on a large vocabulary, continuous speech
recognition task. Directions for future work include evaluation of
other sequence classification criteria [11] for neural network train-
ing, comparison of frame-based training and sequence-based train-
ing in tandem systems [17], and development of methods for neural
network training that scale to larger networks and data sets.
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