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ABSTRACT

In this paper, we present a new optimization method for MMIE-
based discriminative training of HMMs in speech recognition. In
our method, the MMIE training of Gaussian mixture HMMs is for-
mulated as a so-called trust region problem, where a quadratic ob-
jective function is minimized under a spherical constraint, so that an
efficient global optimization method for the trust region problem can
be used to solve the MMIE training problem of HMMs. Experimen-
tal results on the WSJ0 Nov’92 evaluation task demonstrate that the
trust region based optimization significantly outperforms the con-
ventional EBW method in terms of optimization convergence behav-
ior as well as speech recognition performance. It has been observed
that the trust region method achieves up to 23.3% relative recogni-
tion error reduction over a well-trained MLE system while the EBW
method gives only 13.3% relative error reduction.

Index Terms— Speech recognition, Hidden Markov models,
Optimization methods

1. INTRODUCTION

Recently, discriminative training (DT) methods have achieved a
tremendous success in a variety of speech recognition tasks. Many
different DT methods have been proposed to estimate Gaussian
mixture continuous density hidden Markov models (CDHMMs).
Discriminative training of CDHMM parameters is essentially an op-
timization problem. First of all, we formulate an objective function
according to certain estimation criterion, such as maximum mutual
information (MMI), minimum classification error (MCE), minimum
word or phone error (MWE or MPE), etc. Secondly, an effective
optimization method is used to minimize or maximize the objective
function w.r.t. all CDHMM parameters. In speech recognition,
several different methods have been used to optimize the derived ob-
jective function, including GPD (generalized probabilistic descent)
algorithm based on first-order gradient descent, the approximate
second-order Quickprop method, extended Baum-Welch (EBW)
algorithm based on growth transformation and etc.

In this paper, we develop a trust region based HMM parameter
optimization method for discriminative training of HMMs. Follow-
ing an approximation-maximization manner, we first derive an aux-
iliary function to approximate the original MMI objective function
of HMMs in a close neighborhood of initial model parameters. For
Gaussian mixture CDHMMs, the auxiliary function is a quadratic
function. Next, we propose to impose a locality constraint for all
Gaussian kernels to ensure that the above approximation remains
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valid during optimization process. Under some conditions, the local-
ity constraint can be relaxed as a spherical or elliptic constraint. As
a result, the MMIE training of HMMs can be formulated as a trust
region problem where a quadratic objective function is minimized
under a spherical or elliptic constraint. Since there exists an efficient
algorithm to find the global optimum for this type of trust region
problem, it can be used to solve the MMIE training of HMMs in a
fairly efficient way. Compared with conventional EBW method, the
trust region based optimization is a bounded optimization method so
that the stability and generalization ability of parameter optimization
can thus be improved. Since the global optimal point of the auxiliary
function is guaranteed to be found in each iteration, the trust region
method converges faster than other optimization methods.

In this work, we have evaluated our trust region based optimiza-
tion method for the MMIE-based discriminative training in speech
recognition on the standard WSJ0 Nov’92 evaluation task. Experi-
mental results show that the trust region based optimization signifi-
cantly outperforms the conventional EBW method in terms of con-
vergence behavior as well as speech recognition performance.

The rest of this paper is organized as follows: in Section 2, the
trust region problem in mathematic literature is briefly reviewed; in
Section 3 and 4, the MMIE training problem is formulated as a trust
region based optimization problem; Section 5 gives our experimental
results; and finally in Section 6, we will draw our conclusions.

2. TRUST REGION PROBLEM AND ITS SOLUTION

We know that most non-convex optimization problems are difficult
to solve. One of few non-convex optimization problems with ef-
ficient algorithm is minimization of a quadratic function under a
sphere or elliptic constraint. This problem arises as a special case
in a number of nonlinear programming problems, which are usually
called trust region (TR) problems [1]. In this section, we briefly re-
view the optimization theory to show how the global minimum of
this TR problem can be efficiently found by a fast algorithm.

Recall that a general quadratic function of a n-variable vector,
u, has the form 1

2
u�Qu+q�u, where Q is a symmetric matrix and

q a vector. The TR problem is expressed as:

min
u∈Rn

1

2
u�Qu + q�u s.t. u�u ≤ ρ2, (1)

with ρ a constant to control size of the spherical trust region. If Q is
positive definite, a global minimum to Eq. (1) can be calculated as
û = −Q−1q. Furthermore, if the norm of û is bounded by ρ2, i.e.,
û�û ≤ ρ2, then û is a feasible solution of the TR problem in Eq.
(1). In all other cases, the global minimum of Eq. (1) can also be
found efficiently according to the following theorem [1]:
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Theorem 1 The vector u∗ is the global solution to the trust region
problem in Eq. (1) if and only if u∗ is feasible and there is a scalar
λ ≥ 0 such that the following conditions are satisfied:

(Q + λI)u∗ = −q,

λ(u∗�u∗ − ρ2) = 0,

(Q + λI) is positive semi-definite,

(2)

where I denotes identity matrix.

As proven in [1], the conditions in Eq. (2) are both necessary
and sufficient conditions of that u∗ is globally minimum of Eq. (1).
Based on the first condition in Eq. (2), the global minimum u∗ can
be easily calculated based on a scalar λ as:

u∗ = −(Q + λI)−1q. (3)

Therefore, the TR problem in Eq. (1) turns out into a much easier
problem to search for a scalar λ to satisfy that (Q + λI) is positive
semi-definite and the norm of u∗ equal to ρ2, i.e. u∗�u∗ = ‖(Q +
λI)−1q‖2 = ρ2.

Moreover, another theorem in [1] is useful for searching the
scalar λ for u∗. Define λ0 as the minimum λ such that Q + λI
is positive semi-definite. And it is easy to see that λ0 is the negative
of the smallest (closest to -∞) eigenvalue of Q.

Theorem 2 If q �= 0, λ1 and λ2 are two scalars that satisfy λ0 ≤
λ1 < λ2. Let u∗

1 and u∗
2 are solutions to (Q + λ1I)u∗

1 = −q and
(Q + λ2I)u∗

2 = −q respectively, then ‖u∗
1‖2 > ‖u∗

2‖2.
In other words, the norm ‖(Q + λI)−1q‖2 is a monotonic de-

creasing function of λ for λ > λ0. As a result, the unique scalar,
denoted as λ∗, which satisfies ‖(Q + λ∗I)−1q‖2 = ρ2, can be effi-
ciently found in the interval [λ0,∞) using a binary search method.

3. MMIE AS CONSTRAINED OPTIMIZATION

For a training set containing R utterances {O1, · · · , OR}, the
MMIE objective function can be written as:

FMMI(Λ) =
1

R

∑
r

Fr(Λ|Or)

=
1

R

∑
r

[
log p(Or | Λ,M+

r )− log p(Or | Λ,M−
r )

]

(4)

where Λ represents the set of all HMM parameters, M+
r and M−

r

stand for the reference model space and competing model space of
Or , respectively. In MMIE training, M+

r = {Wr}, which is the
reference word sequence, while M−

r is composed of all possible
word sequences, which are usually represented by a word lattice or
graph.

As shown in [2], during the optimization process of the above
MMIE objective function, it is beneficial to impose a local con-
straint on model parameters Λ to ensure that they do not deviate too
much from its initial values, i.e., Λ(n). The local constraint can be
quantitatively defined based on Kullback-Leibler divergence (KLD).
Therefore, MMIE training of HMM parameters, Λ, can be formu-
lated as the following iterative constrained maximization problem:

Λ(n+1) = arg max
Λ

FMMI(Λ) (5)

subject to D(Λ||Λ(n)) ≤ ρ2, (6)

where D(Λ||Λ(n)) is the KLD between Λ and Λ(n), and ρ > 0 is a
pre-set constant to control the search range.

4. FORMULATINGMMIE AS TRUST REGION PROBLEM

In the following, we consider to convert the above constrained op-
timization of MMIE into a trust region (TR) problem in Eq. (1) so
that it can efficiently solved using the fast algorithm introduced in
Section 2.

4.1. Transformation of Locality Constraint

Assume that there are totally K Gaussian mixtures in the CDHMM
set, i.e., Λ = {λk | k = 1, · · · ,K}, where λk denotes a multivariate
Gaussian distribution with mean vector μk and covariance matrix
Σk, i.e.,N (μk, Σk) where k ∈ (1, 2, . . . ,K).

As shown in [2], the KLD-based constraint in Eq. (6) can be
relaxed as sum of all individual Gaussians as follows:

D(Λ||Λ(n)) ≤
∑

k

D(λk || λ(n)
k ) ≤ ρ2

2
. (7)

The KLD for each Gaussian, D(λk || λ
(n)
k ), can be calculated

by the following closed-form formula as:

D(λk ‖ λ
(n)
k ) =

1

2

[
(μk − μ

(n)
k )�Σ−1

k (μk − μ
(n)
k )

+tr
(
ΣkΣ

(n)
k

−1)
+ log

|Σ(n)
k |
|Σk| −M

] (8)

where M is dimension of observation vectors.
If we only consider to optimize mean vectors, μk, of HMMs

and assume covariance matrices, Σk , are constant during the MMIE
training, the locality constraint in Eq. (7) can be simplified as:

∑
k

(μk − μ
(n)
k )�Σ

(n)−1
k (μk − μ

(n)
k ) ≤ ρ2. (9)

We first normalize each mean vector with its corresponding co-

variance matrix as μ̂k = Σ
(n)− 1

2
k (μk − μ

(n)
k ), then we concatenate

all normalized mean vectors as a large single super-vector:

u =

⎡
⎢⎢⎢⎣

μ̂1

μ̂2

...
μ̂K

⎤
⎥⎥⎥⎦

(DK×1)

. (10)

Finally, the locality constraint in Eq. (9) can be rewritten as a
spherical constraint:

u�u ≤ ρ2. (11)

4.2. Approximation of MMIE Objective Function

Based on the expectation-based approximation (E-approx) method
in [3], the log-likelihood function of HMMs can be approximated by
an auxiliary function Q(Λ|Λ(n)) as follows:

log p(Or | Λ,Mr) ≈ Qr(Λ|Λ(n))

≡
∑

l∈Mr

∑
sl

[
log p(Or, l, sl|Λ) · Pr(l, sl|Or, Λ

(n))
]
−H(Λ(n))

(12)
where l denotes a complete path in Mr and sl are all missing data
along the path l, andH(Λ(n)) ≡ ∑

l∈Mr

∑
sl

[log Pr(l, sl|Or, Λ
(n))·
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Fig. 1. Trust region constraint (dashed circle) for parameter opti-
mization. ‘O’ is the optimal of Ar with constraint, while ‘X’ is the
optimal without constraint.

Pr(l, sl|Or, Λ
(n))] stands for entropy of missing data l and sl cal-

culated with Λ(n).
Based on the E-approx in Eq. (12), each term Fr(Λ|Or) in Eq.

(4) can be approximated by the following auxiliary function Ar as:

Ar(Λ|Λ(n)) =
[
Q+

r (Λ | Λ(n))−Q−
r (Λ | Λ(n))

]
+ C, (13)

where Q+
r is calculated as in Eq. (12) based on M+

r , Q−
r is com-

puted based onM−
r , and C is a constant independent of Λ.

Based on the discussions in [3], it is straightforward to prove
that:

Fr(Λ|Or)
∣∣∣
Λ=Λ(n)

= Ar(Λ|Λ(n))
∣∣∣
Λ=Λ(n)

(14)

∂Fr(Λ|Or)

∂Λ

∣∣∣
Λ=Λ(n)

=
∂Ar(Λ|Λ(n))

∂Λ

∣∣∣
Λ=Λ(n)

(15)

Obviously,Ar can be viewed as a local approximation of Fr around
the initial model point Λ(n) with accuracy up to the first order deriva-
tive. Therefore, if we optimize the auxiliary function Ar subject to
the locality constraint, it may indirectly improve the original objec-
tive function Fr as well. It should be noted, however, that opti-
mization of the auxiliary function Ar does not necessarily lead to
the optimal solution to the objective function Fr since Ar is only
a local approximation of Fr around the initial model point Λ(n).
Therefore, a locality constraint as in Eq. (7) is necessary to ensure
model parameters will not deviate too much from their initial val-
ues so that Ar always serves as a good approximation of Fr. Fig.
1 illustrates the constraint (dashed circle) imposed for optimization.
When a constraint with appropriate size is used, optimizing Ar will
improve Fr as well.

From Eqs. (12) and (13), the auxiliary function Ar(·) can be
computed as:

Ar(Λ|Λ(n)) =
∑

l∈M+
r

∑
sl

[
Pr(l, sl | Or, Λ

(n)) · log p(Or, l, sl | Λ)

]

−
∑

l∈M−
r

∑
sl

[
Pr(l, sl | Or, Λ

(n)) · log p(Or, l, sl | Λ)
]
+ C

=
∑

k

∑
t

(
γ+

krt − γ−
krt

)
log p(Ort, k | Λ) + C′ (16)

where γ+
krt and γ−

krt denote occupancy statistics for k-th Gaussian
kernel collected based onM+

r andM−
r respectively, and C′ is con-

stant independent of Λ. If we only optimize mean vectors of HMMs,
we have:

log p(Ort, k | Λ) = −1

2
(Ort−μk)�Σ

(n)−1
k (Ort−μk)+crk (17)

where crk is another constant independent of Gaussian mean vec-
tors. Then if we define

ξk =
∑

r

∑
t

(γ+
krt − γ−

krt) (18)

gk =
∑

r

∑
t

(γ+
krt − γ−

krt)Σ
(n)
k

− 1
2 (μ

(n)
k −Ort) (19)

and construct a matrix and vector as:

Q =

⎡
⎢⎢⎢⎣

ξ1 · ID×D

ξ2 · ID×D

. . .
ξK · ID×D

⎤
⎥⎥⎥⎦ (20)

q =

⎡
⎢⎢⎢⎣

g1

g2

...
gK

⎤
⎥⎥⎥⎦

(DK×1)

. (21)

The MMIE training of HMMs in Eq. (4) can be converted to the
TR problem as:

Λ∗ = arg min
Λ

FMMI(Λ) ≈ arg min
Λ

∑
r

Ar(Λ|Λ(n))

≡ arg min
Λ

[
1

2
u�Qu + q�u

]
(22)

which subject to the locality constraint in Eq. (11), i.e. u�u ≤ ρ2.
Obviously, the efficient global optimization method in Section 2

can be used to solve the TR problem in Eq. (22) for MMIE train-
ing of HMMs. In this case, the Q matrix is a block diagonal ma-
trix which is not positive definite. So we need to search for a λ
that makes (Q + λI) positive definite, and ensure that the solution
u = −(Q + λI)−1q satisfies the constraint u�u = ρ2. According
to Theorem 2, this problem can be solved efficiently with a binary
search of λ. In our experiments, the computational cost spent for
finding the optimal λ∗ is negligible when compared with the cost to
collect statistics to compute Q and q from the whole training set.

Note that optimization of Gaussian covariance matrices can also
be similarly formulated as a trust region problem based on the second
order Taylor series approximation. Due to space limit, we will report
those results somewhere else in the future.

5. EXPERIMENTS

We have evaluated the above trust region based optimization method
for MMIE training of HMMs in speech recognition on the WSJ0
database. Our training set is the standard SI-84 set, consisting of
7,133 utterances from 84 speakers. Evaluation is performed on the
standard Nov’92 non-verbalized 5k close-vocabulary test set (wsj-
5k), including 330 utterances from 8 speakers. For the MLE base-
line, we use a similar setup as the WSJ HTK recipe in [4, 5]. Cross-
word tri-phone HMMs with a total number of 2,774 tied-states are
trained, and each state has 8 Gaussian components. The word error
rate (WER) of the MLE baseline using standard tri-gram language
model is 4.89%. This result is comparable with the best results on
this task reported in [4, 5].

For MMIE discriminative training, we evaluate and compare two
parameter optimization methods: one is the conventional extended
Baum-Welch (EBW), which is implemented using the latest release
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Fig. 2. Optimization of MMIE criterion using EBW method and
trust region based method with different region size ρ.

of HTK [6]; the other one is the trust region based parameter opti-
mization proposed in this paper. For trust region based parameter
optimization, we only optimize mean vectors of the HMMs. For
EBW, we optimize mean vectors only in the first set of experiments,
and simultaneously update all parameters, including means, covari-
ances and mixture weights, in the second set of experiments. All
other training parameters are set to typical values suggested by HTK
Book [6] or based on our previous experiments on the wsj-5k task
[7], e.g., the learning constant E = 2, i-smoothing τ = 100 for
EBW; acoustic scaling factor κ = 1/15.

5.1. Performance Comparison in terms of MMIE Criterion

Firstly, we compare performance of the two optimization methods in
terms of improving the MMIE objective function. Fig. 2 shows the
learning curves for EBW and TR (with ρ = 24/48/72). The results
show that the EBW method improves the MMIE criterion more ef-
fectively at the first few iterations while the TR method significantly
outperforms EBW at the later iterations. This is mainly due to the
fact that the EBW method is an unconstrained optimization, while
the TR method constrains model parameters within a trust region
that is considered to be trustworthy. The TR method finally con-
verges to a better solution because a global optimum of the auxiliary
function is always found at each iteration.

5.2. Performance Comparison in terms of WER

Secondly, we compare speech recognition performance between
EBW and TR in terms of WER at each iteration. The results in Fig.
3 show that the TR methods (updating means only) with various
region sizes consistently outperform the EBW methods (either up-
dating means only or updating all parameters). The best result using
the EBW method is 4.24% in WER (13.3% relative error reduction
over MLE). On the other hand, the best recognition performance
with the TR training is 3.75% in WER, corresponding to 23.3% rel-
ative error reduction over the MLE. To our knowledge, this result is
one of the best results reported on this task without multiple systems
combination.

Besides, it is also observed that the trust region size ρ directly af-
fects the convergence behavior of the algorithm. A large ρ value typ-
ically gives better convergence of the objective function, as shown
in Fig. 2. But a too large ρ value may cause fluctuation in WER,
as shown in Fig. 3. The best recognition result is achieved us-
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Fig. 3. WER reduction using EBW method and trust region based
method with different region size ρ.

ing ρ = 48 in this experiment. We suggest to set ρ2 = 0.02 ∼
0.1× # Gaussian kernels for the trust region based HMM parameter
optimization.

6. CONCLUSIONS

This paper presents a trust region based parameter optimization
method for MMIE-based discriminative training of HMMs in
speech recognition. This method derives an auxiliary function to
approximate the original objective function, and imposes a local-
ity constraint to ensure the auxiliary function serves as a good
approximation of the objective function during optimization. The
trust region based optimization can be solved effectively by using a
fast global optimization algorithm proposed in optimization theory.
Experimental results on the WSJ0 Nov’92 5k task show that the
proposed trust region method yields better performance than the
conventional EBW method, in terms of both criterion improvement
and recognition WER reduction.
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