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ABSTRACT
In this paper we show how common training criteria like for example
MPE or MMI can be extended to incorporate a margin term. In addi-
tion, a transducer-based training implementation is presented, which
covers a large variety of discriminative training criteria for ASR, in-
cluding the standard MMI, MPE, and MCE criteria, as well as the
modifications to these criteria presented here. The modified criteria
are directly related with the conventional large margin formulation of
SVMs. In the proposed approach, we can take advantage of the gen-
eralization guarantees of large margin classifiers while keeping the
existing framework for the discriminative training, including the ef-
ficient algorithms for conventional MPE or MMI. On the conceptual
side, this allows for a direct evaluation of the margin term. Finally,
experimental results are presented for different large vocabulary con-
tinuous speech recognition tasks (one of which is trained on a very
large amount of training data) using these modified criteria.

Index Terms— training criteria, large margin, weighted finite
state transducer, speech recognition

1. INTRODUCTION

The parameter estimation problem has two important ingredients:
the loss term (e.g. phoneme error) and a term to control the model
complexity (e.g. regularization and margin). The margin concept has
proven to be useful for many applications. However, depending on
the training/test conditions, we expect different relative importance
of the two terms, see Tab. 1.

This work is directly based on our previous work in [1] but
presents additional experimental results for Large Vocabulary Con-
tinuous Speech Recognition (LVCSR). More explicitly, we would
like to experimentally find out the potential of a margin term for
LVCSR. The experiments were designed to meet the following ob-
jectives. First, a direct evaluation of the margin term. Ideally, we can
turn on/off the margin term in the optimization problem. In particu-
lar, we want to avoid effects caused by different loss functions, op-
timization algorithms, model parameterization, convergence speed
etc. as far as possible. Unfortunately but like for (most) other ap-
proaches, the effect of spurious local optima cannot be excluded.
Second, the evaluation of the margin on state-of-the-art LVCSR sys-
tems. Ideally, we directly improve on the best discriminative crite-
rion. In our case, this is the MPE rather than the MMI criterion.
Third, show a clear relationship of our approach to existing large
margin classifiers (SVMs). As discussed in [1], existing work on
large margin training in ASR is not in complete agreement with these
objectives. Finally and as a matter of form, no tuning (e.g. the deter-
mination of the best training iteration) on the test data, in particular
because the margin works on the generalization issue.

To achieve the above-listed objectives, we transform a standard
large margin optimization problem including constraints and slack

Table 1. Relative importance of loss and margin terms under differ-
ent training/test conditions.

Loss vs. Margin
infinite data ↔ sparse data
many training errors ↔ few training errors

variables into an equivalent optimization problem that resembles
conventional training criteria, e.g. MMI or MPE. Like for MCE,
the loss function is replaced with a smooth approximation [2]. The
practical advantage of this approach is that the incorporation of the
margin term leads only to small modifications of the conventional
training criteria. From the technical point of view, we consider
this approach attractive because the same efficient algorithms as for
conventional MMI and MPE can be used. Moreover, we even do not
need to modify our transducer-based implementation. Keep in mind
that the modifications concern only the training criteria and do not
affect the underlying model, i.e., the search remains unchanged.

The remainder of the paper is organized as follows. First, the
large margin optimization problem is formulated in Sec. 2. Based on
the ideas in this section, the conventional training criteria MPE and
MMI are modified to incorporate a margin term in Sec. 3. Then, our
transducer-based implementation is described in Sec. 4, and used to
evaluate the effect of the margin term for LVCSR in Sec. 5. Finally,
conclusions are drawn in Sec. 6.

2. COMMON LARGE MARGIN CLASSIFIERS

Different formulations of the large margin optimization problem can
be found in the literature, e.g. [3, 4]. Here, the optimization problem
is based on the Hidden Markov SVM introduced in [5] because it
best fits our needs. The associated optimization problem is directly
stated in the form that best serves our purpose. The reader is referred
to the literature for the original formulation. Then, we replace the
non-smooth loss function by a smooth approximation such that we
can use standard gradient-based algorithms, e.g. Extended Baum
Welch (EBW) or RProp.

2.1. Support Vector Machines (SVMs)
According to [5], for C classes, N labeled observations (xn, cn),
and feature functions fi(x, c), the optimization problem of SVMs
can be formulated as follows

Λ̂ = arg min
Λ

(
1

2
‖Λ‖2 +

J

N

NX
n=1

l(cn, dn; 1)

)
.

For SVMs, the distance vector dn has the components dnc =
λ� (f(xn, cn) − f(xn, c)). Note that this parameterization,
λ�f(x, c) also includes (log-)linear models of the type λ�

c x with
Λ = {λc}. The empirical constant J > 0 is used to balance the
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Fig. 1. Left: comparison of hinge loss, MMI, and Modified MMI,
γ = 1. Right: comparison of margin error loss, MPE, and Modified
MPE, γ = 3. In either case C = 2, and d = dncn

.

margin and the loss terms. The hinge loss function is the typical loss
function used in the context of SVMs and is defined as [5]

l
(hinge)(cn, dn; ρ) := max

c�=cn

{max{−dnc + ρ, 0}} . (1)

In this formulation, the margin ρ = 1 is kept fixed and the model
parameters Λ are scaled to indirectly maximize the margin. In the
ASR experiments below, ρ shall be set to another (empirical) value
to have a better initialization. In alternative formulations, the margin
may be directly maximized [4].

2.2. Smooth Loss Functions/Limits
As mentioned above, we would like to use gradient-based optimiza-
tion algorithms, which require differentiable training criteria. For
this reason, we define smooth loss functions lγ with the parameter
γ to control the smoothness of the loss function. In addition to the
differentiability, we require that lγ(·)

γ→∞
→ l(·), i.e., the smooth loss

function converges to the original loss function.
The hinge loss function in Eq. (1) is replaced with the soft-max

approximation

l
(hinge)
γ (cn, dn; ρ) =

1

γ
log

0
@1 +

X
c�=cn

eγ(−dnc+ρ)

1
A .

We feel that the weak point about the hinge loss in pattern recog-
nition is that it is unclear how this loss is correlated with the recog-
nition error, which is the typical measure used to evaluate a recog-
nition system eventually. In other words, there is some guarantee
regarding the generalization for the hinge loss, but not the recogni-
tion error which we are actually interested in. In addition, the hinge
loss is not robust against outliers because even a single observation
can dominate the criterion, see Fig. 1. For these reasons, we prefer
the recognition error over the hinge loss. The ideal margin error is
defined as

l
(error)(cn, dn; ρ) := E[ĉn(dn)|cn].

Here, ĉn denotes the recognized class, including the margin ρ. It is
the class that maximizes pρ(c|x) ∝ exp(γ(−dnc − ρδ(c, cn))). In
the simplest case,E[c|cn] counts the recognition errors, 1−δ(c, cn).
For ASR, a string-based error is used instead, e.g. the phoneme error.

Below, we shall use this loss function in the MPE sense

l
(error)
γ (cn, dn; ρ) =

X
c

E[c|cn]pρ(c|xn).

3. MODIFIED TRAINING CRITERIA IN ASR

In this section, we apply the results from the last section to ASR.
Keep in mind that the SVM formulation is more intuitive for HCRFs

than Gaussian HMMs (GHMMs). The equivalence of GHMMs and
Gaussian-like HCRFs [6], however, allows us to apply this approach
to GHMMs as well.

In ASR, the data is sequential. A natural extension of the mar-
gin from simple to sequential observations is to replace the above 0-1
margin by the string accuracyA(c, cn) between c and cn [7, 4]. This
choice makes sure that the SVMs for i.i.d. sequences [5] is consistent
with the original SVMs [3] for single observations. Unfortunately,
there is no natural choice of accuracy. Two convenient definitions are
the approximate accuracy also used for MPE [1, 8] and the frame-
based accuracy (Hamming distance) [4, 9]. In the remainder of this
section, two variants of the above smooth optimization criterion are
introduced and discussed. For this purpose, some additional notation
is required. W denotes a word sequence andX the sequence of fea-
ture vectors xt. Furthermore, p(W ) represents the language model
and p(X|W ) stands for the acoustic model (without language model
scaling factor for simplicity).

3.1. Modified MMI
First, a variant of the large margin optimization problem based on
the hinge loss is presented. Modified MMI is defined as

F (MMI)
γ (Λ) = −

1

2
‖Λ‖2

+
J

N

NX
n=1

1

γ
log

„
{p(Wn)pΛ(Xn|Wn) exp(−ρA(Wn, Wn))}γP

W
{p(W )pΛ(Xn|W ) exp(−ρA(W, Wn))}γ

«

For HCRFs, the acoustic model is log-linear. For this choice and
γ → ∞, it can be shown that the optimization problem converges
to the SVM optimization problem in Sec. 2.1 using the hinge loss
function [1]. In general, the L2-norm regularization is replaced with
the stronger regularization ‖Λ−Λ0‖

2 where Λ0 is some reasonable
initial estimate, and is similar to i-smoothing used for GHMMs [1].
Due to the equivalence of GHMMs and Gaussian-like HCRFs [6],
we can also use GHMMs for the acoustic model and i-smoothing for
regularization [1]. Note that it can be shown that this variant of Mod-
ified MMI is theoretically equivalent to the heuristically motivated
Boosted MMI [8]. In practice, Boosted MMI differs from Modified
MMI in the way the iteration constants are set and the choice of the
acoustic model for i-smoothing.

3.2. Modified MPE
In contrast to the hinge loss, the recognition error is bounded as il-
lustrated in Fig. 1. This means that a single observation cannot dom-
inate the criterion and thus, is expected to be more robust than the
hinge loss.

We define an MPE-like criterion representing a smoothed mar-
gin phoneme error with regularization according to Sec. 2.2

F (MPE)
γ (Λ) =

1

2
‖Λ‖2

+
J

N

X
n,W

E[W |Wn]{p(W )pΛ(Xn|W ) exp(−ρA(W, Wn))}γP
W ′{p(W ′)pΛ(Xn, W ′) exp(−ρA(W ′, Wn))}γ

.

Using log-linear acoustic models, it can be shown that this criterion
converges to the SVM optimization problem in Sec. 2.1 using the
associated margin phoneme error [1]. As for Modified MMI, we can
also use GHMMs for the acoustic model and i-smoothing instead [1].
The accuracy A(·, ·) for the margin may be the same approximate
phoneme accuracy as for MPE.

Justification of MPE heuristics? Observe that formally, Modi-
fied MPE is similar to conventional MPE. Indeed, Modified MPE
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gives some new insight into several heuristics typically used for con-
ventional discriminative training: the weak language model can be
considered an approximation of the margin term, i-smoothing is a
refined regularization term, and the smoothing parameter γ corre-
sponds with the scaling factor for the posteriors.

4. TRANSDUCER-BASED IMPLEMENTATION

In this section, our transducer-based implementation for discrimina-
tive training is described. The implementation is based on the finite
state automaton library FSA [10]. The outstanding feature of this
implementation is that a large class of lattice-based training criteria
including standard and Modified MMI/MCE/MPE, share the same
algorithms in combination with different semirings. More specifi-
cally, the MMI and MPE recursion formulae for GHMMs found in
the literature are unified in a single forward/backward (FB) algo-
rithm for acyclic transducers operating on different semirings. The
material of this section is not essential for the comprehension of the
ideas in the previous sections. However, this generalization will fa-
cilitate future research and implementations concerning alternative
models (e.g. HCRFs [1], probably also in other domains) or more
refined training criteria, cf. the unified criterion in [11]. Here, we
would like to focus on the different steps required to estimate objec-
tive functions of the simple form EP [A] (key quantity of the unified
criterion) where E stands for the expectation of the random variable
A (some ”accuracy”) w.r.t. the probability distribution P . The opti-
mization of this objective function is conducted with gradient-based
techniques. IfA is the approximate phoneme accuracy and P stands
for the scaled joint probabilities {p(W )p(X|W )}γ , the MPE cri-
terion is recovered. In the general context of the above-mentioned
unified criterion, however, A and P might represent different quan-
tities, probably without explicit interpretation.

Assume three weighted transducers to represent the word lat-
tices P , the accuracies A, and the margins M. The word bound-
aries are known and kept fixed. The path weights wP [π] of the
probabilistic transducer P with paths π are the joint probabili-
ties {p(W )p(X|W )}γ . In addition, it is assumed that these three
transducers are acyclic and share their topology, i.e., differ only in
the arc weights. The above choices for A and M (approximate
phoneme accuracy or Hamming distance) satisfy these two con-
straints, see [1, 8, 9]. The transducer-based objective function reads

EP [A] =

P
π∈P wP [π]wA[π]P

π∈P wP [π]
. (2)

It can be shown that the gradient of this objective function is the
covariance CovP(A,∇ logP) where∇ logP is the gradient trans-
ducer of P with path weights w∇ logP [π] = ∇ log p(X, W ). The
covariance is defined in a similar fashion as the expectation in
Eq. (2). As shown in [1], the covariance can be efficiently cal-
culated by the standard FB algorithm using the multiplex expecta-
tion semiring [12] instead of the probability semiring known from
the MMI training. This algorithm provides the posterior transducer
Q(Z) derived from the transducerZ := (P,A)with the arc weights
(wZ [a]p, wZ [a]v) := (wP [a], wP [a]wA[a]) [1]. With this formal-
ism, we are in the position to state our transducer-based discrim-
inative training in terms of FSA algorithms from [10] in Tab. 2
and Tab. 3. Obviously, MPE and Modified MPE differ only in the
composition ‘◦‘ of P with the scaled margins obtained by arc-wise
multiplication of wM[a] with the scalar ρ̃ := γρ, multiply(M, ρ̃).
MMI/MPE and Modified MMI/MPE are based on the same FB al-
gorithm for the posteriors but use different semirings: posteriorP(·)
(probability semiring) vs. (v-component of) posteriorE(·) (multi-
plex expectation semiring).

Table 2. Comparison of MMI, MPE, and Modified MMI/MPE.
MPE Modified MPE Modified MMI MMI

P ′ P P ◦ multiply(M, ρ̃) P
Z (P ′,A) P ′

Q posteriorE(Z)v posteriorP(Z)

Table 3. Transducer-based discriminative training in a nutshell, step
3 is implemented with a Depth First Search. See text for details.
Step Description
1. Define P ′ and Z according to Tab. 2.
2. Q = posterior(Z) using respective semiring.
3. For each arc a and for each frame t:

accumulate feature xt with weight wQ[a] for state st.

5. EXPERIMENTAL RESULTS

The effect of the margin term is tested on three different tasks. Com-
pared with [1], this work provides additional experimental results
to confirm our findings for LVCSR there. The German digit string
task is used for a few control experiments whereas the other two are
LVCSR tasks. In the latter two tasks, the HMM states are modeled
by Gaussian densities with globally pooled variances. This allows
us to produce rather good ML baselines consisting of a fairly high
number of densities, cf. Tab. 4. The language model scale, the best
MPE iteration, and the optimal margin parameter ρ are all tuned on
the training and development data [1]. All test data are reserved for
the final evaluation of the acoustic models. The same setups as de-
scribed in [1, 13] are used for the discriminative training. Only for
BNBC Cn, we use RProp instead of the EBW algorithm to optimize
the GHMMs. The approximate phoneme accuracy is chosen for the
margin A because experiments have shown that the word error rates
are rather insensitive to the choice of the margin [1]. Unless other-
wise stated, the scaling factor ρ is set to 0.5.

5.1. German Digit Strings
In a control experiment, Modified MMI was applied to the Sietill
task. This simple digit string recognition task severely suffers from
overfitting. The recognition system is based on gender-dependent
whole-word HMMs. For each gender, 214 distinct states plus one
for silence are used. The vocabulary consists of the 11 German
digit (including the pronunciation variant ‘zwo‘). The setup and cor-
pus statistics are described in [1] and summarized in Tab. 4. The
ML baseline system uses Gaussian mixtures with globally pooled
variances and serves as initialization of the log-linear models. As
expected from Tab. 1, the margin term with ρ = 25 helps signif-
icantly. For the best log-linear HMM, the ML baseline digit error
rate is 1.81% whereas conventional MMI and Modified MMI yield
1.77% and 1.59%, respectively. A similar effect is observed for the
log-linear setup using single densities and all n-th order features up
to degree n = 3. Here, the baseline is the frame-based estimated sys-
tem with 1.75%. MMI reduces the digit error rate to 1.68%. Again,
the best result is achieved with Modified MMI, 1.53%.

5.2. English Parliament Plenary Sessions (EPPS)
This task contains recordings from the European Parliament Plenary
Sessions (EPPS). The setup and corpus statistics are described in
detail in [1]. A summary of the information can be found in Tab. 4.
For recognition, a lexicon with 50k entries in combination with a
4-gram language model is used. Keep in mind that the evaluation
data from the evaluation campaign 2007 (Eval07) are used only for
testing but not tuning. The results for ModifiedMPE are summarized

3751



Table 4. Corpus statistics and acoustic model. Test data are Eval07
and Eval06 (GALE) for EPPS En and BNBC Cn, respectively.
Task Train/Test #States/#Densities

Data [h] Features
Sietill 5.5/5.5 430/27k

25 LDA(MFCC)
EPPS En 92/2.9 4,500/830k

45 LDA(MFCC+voicing)+SAT
BNBC Cn 230/2.2 4,500/1,100k
230h 45 LDA(MFCC+tone)+SAT
BNBC Cn 1500/2.2 4,500/1,200k
1500h 45 LDA(PLP+tone)+42 NN+SAT

Table 5. Word Error Rate (WER) for EPPS English (Eval07) and
BNBC Mandarin (Eval06).

Criterion WER [%]
EPPS En BNBC Cn

230h 1500h
ML 12.0 21.9 17.9
MPE 11.5 20.6 16.5
Modified MPE 11.3 20.3 16.3

in Tab. 5. Refer also to [1] where the interdependence of the weak
unigram language model and the margin was investigated.

5.3. Mandarin Broadcasts
The second LVCSR task consists of Mandarin broadcasts news and
conversations. The experiments are based on the same setup as
described in [13]. The corpus statistics of the two systems under
consideration are shown in Tab. 4. The BNBC Cn 230h/BNBC Cn
1500h use MFCC/PLP features augmented with a tone feature. In ei-
ther system, 9 consecutive frames are concatenated and projected to
45 dimensions by means of a Linear Discriminant Analysis (LDA).
In addition to these base features, the BNBC Cn 1500h system has
50 Neural Network (NN) based posterior features. The features are
warped using Vocal Tract Normalization (VTLN). On top of this,
Speaker Adaptive Training (SAT) is applied. The lexicon with 60k
entries and the 4-gram language model from [13] are used for recog-
nition. The results for the two different setups are shown in Tab. 5.
These results are in agreement with our expectations from Tab. 1 and
the results in [1].

6. CONCLUSIONS

We modified existing training criteria, e.g. MMI, MCE, and MPE
to include a margin term. These modified criteria were shown to
be closely related with standard large margin classifiers, i.e., SVMs.
This approach to large margin optimization has the advantage to fit
into our existing transducer-based framework where the training cri-
teria under consideration mainly differ in the choice of the semiring
(probability vs. expectation semiring), and allows for a direct evalua-
tion of the margin term. As expected, Modified MMI clearly outper-
forms conventional MMI (up to 75% of the discriminative improve-
ment comes from the margin) on a simple digit string recognition
task where overfitting is an issue. For LVCSR, the additional mar-
gin term leads to more limited but nevertheless consistent improve-
ments (less than 25% of the discriminative improvements) compared
with standard MPE, even for a very large amount of training data.
Reasons for this outcome might be that the loss term dominates for
LVCSR as illustrated in Tab. 1, and that the margin concept is al-
ready well approximated by several heuristics (e.g. weak language
model) used for conventional discriminative training.
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