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ABSTRACT

This paper proposes a method for adaptive speech dereverberation
and speaker-position change detection, which have not previously
been addressed. Signal transmission channels in rooms are modeled
as auto-regressive systems in individual frequency bands. The pro-
posed method adaptively estimates the regression coefficients of this
model, which are called room regression coefficients (RRCs). The
proposed method has two distinguishing features: (1) The method
is based on the weighted recursive least squares algorithm, which
enables an efficient RRC-estimate update as well as a fast conver-
gence rate; (2) The method detects changes in speaker position and
so can quickly catch up with the sudden channel changes that such
position changes cause. Detection is realized by finding time frames
where the power of dereverberated speech is anomalously amplified.
Experimental results showed that the proposed method attained con-
vergence in 5 seconds and successfully detected changes in speaker
position.

Index Terms— Dereverberation, speech enhancement, adaptive
filters, weighted RLS algorithm,

1. INTRODUCTION

Room reverberation degrades the quality of speech and the automatic
speech recognition performance. Therefore, many researchers have
studied the speech dereverberation technology.
The existing dereverberation methods may be divided into two

classes. One class directly estimates clean speech signals without
estimating room impulse responses (RIRs) or their inverse filters [1,
2]. The dereverberation methods in this class are advantageous in
that they can work online by employing a small amount of prior
knowledge such as the room’s reverberation time.
The other class uses inverse filters for RIRs. As long as the

speaker does not move during the observation, the methods in this
class are able to yield high quality dereverberated speech. Another
advantage lies in the fact that inverse filter based dereverberation
systems are easily combined with other microphone array systems
including beamformers and blind source separation systems [3].
Therefore, we have investigated this class of dereverberation meth-
ods in a series of our recent publications (see, for example, [4] and
references therin). Most of the existing dereverberation methods
in this class work only with batch processing. However, since the
RIRs may change during the observation if the speaker moves or if
multiple speakers utter alternately, it is essential that we estimate
the inverse filters adaptively. Although an adaptive dereverberation
method was proposed in [5], the method requires a lot of observation
data to attain convergence.
There are three requirements that adaptive dereverberation meth-

ods must meet. First of all, the adaptive dereverberation methods

need to have a fast convergence rate. Moreover, they need to de-
tect changes in speaker position so as to catch up with sudden RIR
changes caused by such speaker-position changes. Finally, they need
to mitigate the reverberation effect even at the beginning of utter-
ance. In [6], we addressed the last problem by using prior knowl-
edge about room acoustics. This paper proposes a method for solv-
ing the first two problems. The method is derived on the basis of the
weighted recursive least squares (RLS) algorithm, which endows the
method with a fast convergence rate and an efficient update rule. The
method can also detect changes in speaker position.

The remainder of this paper is organized as follows. Section 2
describes the proposed adaptive dereverberation method based on
the weighted RLS algorithm. Section 3 proposes the speaker-
position change detection method. These sections also report several
experimental results. Section 4 concludes the paper.

2. ADAPTIVE SPEECH DEREVERBERATIONWITH
WEIGHTED RLS ALGORITHM

2.1. Adaptive speech dereverberation task

Throughout this paper, we represent acoustic signals in the short-
time Fourier transform (STFT) domain. The STFT domain repre-
sentation allows us to employ the dereverberation-friendly reverber-
ation model proposed in [4]. Hereafter, we denote the frame and
frequency-band indices by t and l, respectively, with 0 ≤ l ≤ L−1,
where L is the number of frequency bands.

Let st,l and x
(m)
t,l denote a clean speech signal and a reverber-

ant speech signal observed by the m-th microphone, respectively.
Reference [4] showed that the effect of room reverberation could be
well modeled with multi-channel auto-regressive (MCAR) systems
in individual frequency bands. Based on MCAR modeling of the
room reverberation, the reverberant signal observed by the first mi-

crophone, x
(1)
t,l , is given by

x
(1)
t,l =

M�
m=1

Kl�
k=1

g
(m)
k,l

∗
x

(m)
t−k,l + st,l, (1)

where superscript ∗ stands for the complex conjugate operator and
g
(m)
k,l is the k-th regression coefficient operating on the m-th ob-

served signal in the l-th frequency band. We hereafter call g
(m)
k,l a

room regression coefficient (RRC). We can rewrite (1) as

x
(1)
t,l = � H

l � t−1,l + st,l, (2)

� l =[g
(1)
1,l , · · · , g

(1)
Kl,l

, · · · , g
(M)
1,l , · · · , g

(M)
Kl,l

]T (3)

� t−1,l =[x
(1)
t−1,l, · · · , x

(1)
t−Kl,l

, · · · , x
(M)
t−1,l, · · · , x

(M)
t−Kl,l

]T , (4)
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where superscriptsH and T stand for the complex and non-complex
conjugate operators, respectively. (2) leads to the following signal
recovery model:

st,l = x
(1)
t,l − � H

l � t−1,l. (5)

Thus, the task to be solved is the adaptive estimation of all RRCs,
which are collectively represented as Θ = { � l}0≤l≤L−1 .
The task is more specifically defined as follows. Let us represent

the set of all reverberant signals observed at the t-th time frame as

Xt = {x(m)
t,l }0≤l≤L−1,1≤m≤M . Furthermore, we represent all the

observed signals up to the t-th time frame as X̄t = {Xτ}1≤τ≤t.
Now, suppose that the observed signals are given frame by frame.
Then, the task is defined as updating an estimate of Θ every time a
new observation data set Xt is provided.

2.2. Bayesian estimation approach

We approach the above task by using the Bayesian estimation
method. With the Bayesian estimation approach, we calculate
p(Θ|X̄t) sequentially for every t = 1, 2, · · · , where p(Θ|X̄t) is the
posterior probability density function (PDF) of the RRC set, gΘ,
given the observation data set up to the t-th frame, X̄t. The Bayes
theorem tells us that p(Θ|X̄t) can be calculated from p(Θ|X̄t−1)
according to the following update rule:

p(Θ|X̄t) =
p(Xt|Θ, X̄t−1)p(Θ|X̄t−1)�
p(Xt|Θ, X̄t−1)p(Θ|X̄t−1)dΘ

. (6)

The right hand side of (6) includes the observation data PDF for the
current frame, p(Xt|Θ, X̄t−1), and the posterior PDF of the RRC set
at the immediately preceding frame, p(Θ|X̄t−1). Below, we define
these two PDFs and embody the update rule.
Now, let us assume that the clean speech signal, st,l, is drawn

from the complex Gaussian distribution with mean 0 and variance

sλt,l. Note that { sλt,l}0≤l≤L−1 corresponds to the short-time
power spectrum of clean speech at frame t. Then, the observation
data PDF for the current frame is given by

p(Xt|Θ, X̄t−1) =

L−1�
l=0

N � � x
(1)
t,l ; � H

l � t−1,l, sλt,l � , (7)

where N � { � ; 	 , Γ} is the PDF of the (possibly multivariate) com-
plex Gaussian random variable � withmean 	 and covariance matrix
Γ.
Next, we assume that the posterior distribution of � l after ob-

serving X̄t−1 is a complex Gaussian distribution with mean 
 l(t−
1) and covariance matrix Φl(t − 1). Therefore, the RRC posterior
PDF at the immediately preceding frame is written as

p(Θ|X̄t−1) =

L−1�
l=0

N � { � l; 
 l(t− 1), Φl(t− 1)}. (8)

By reorganizing (6) using (7) and (8), we finally obtain

p(Θ|X̄t) =
L−1�
l=0

N � { � l; 
 l(t), Φl(t)}, (9)

where


 l(t) =Φl(t) � � t−1,lx
∗
t,l

sλt,l
+ Φl(t− 1)−1 
 l(t− 1) � (10)

Φl(t) = � � t−1,l � H
t−1,l

sλt,l
+ Φl(t− 1)−1 � −1

. (11)

Note that the RRC posterior PDF at frame t, given by (9), is in the
same form as that at frame t− 1, given by (8).
Threfore, the adaptive dereverberation algorithm based on the

Bayesian estimation method is summarized as follows.

Bayesian adaptive dereverberation algorithm
1. Initialization
Set the initial mean 
 l(0) and covariance matrixΦl(0) of the
RRC posterior distribution for each l ∈ {0, · · · , L− 1}.

2. Clean speech estimation and RRC update
Perform the following procedures sequentially for t =
1, 2, · · · .
(a) Calculate the clean speech signal estimate ŝt,l for all

l ∈ {0, · · · , L− 1} as
ŝt,l = xt,l − 
 l(t− 1)H � t−1,l. (12)

(b) Estimate the clean speech power spectrum { sλt,l}0≤l≤L−1.
One convenient way to roughly estimate sλt,l is using
the power spectrum of one of theM observed signals.

(c) Update the mean 
 l(t − 1) and covariance matrix
Φl(t − 1) of the RRC posterior distribution for each
l ∈ {0, · · · , L− 1} according to the following update
rules:


 l(t) =Φl(t) � � t−1,lx
∗
t,l

sλt,l

+ αΦl(t− 1)−1 
 l(t− 1) � (13)

Φl(t) = � � t−1,l � H
t−1,l

sλt,l
+ αΦl(t− 1)−1 � −1

. (14)

Note that we have introduced forgetting factor α, where
0 < α < 1, in order to endow the algorithm with adapt-
ability.

In the experiments described later, the initial mean 
 l(0) and co-
variance matrixΦl(0) are set at a zero vector and an identity matrix,
respectively, for all l. As an alternative, these parameters may be
determined by exploiting prior knowledge about room acoustics as
in [6].

2.3. Weighted RLS algorithm

The above algorithm involves the computation of a Kl-dimensional
inverse matrix for each l value every time a new observation data
set Xt is given. In order to reduce the computational cost, we here
propose a new adaptive dereverberation algorithm. This algorithm
is based on the RLS algorithm [7, Chapter 9] with time-frequency
dependent weights, which is called weighted RLS algorithm.
Now, let us assume that matrix A is defined as

A = B−1 + CD−1CH , (15)

whereB,C, andD are arbitrary matrices. According toWoodbury’s
identity [7], A−1 may be expressed as

A−1 = B −BC(D + CHBC)−1CHB. (16)

Setting B, C, andD as

B =
Φl(t− 1)

α
, C = � t−1,l, D = sλt,l (17)
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Fig. 1. Room layout.

enables us to rewrite (14) as

Φl(t) =
1

α
� Φl(t− 1)− Φl(t− 1)

× � t−1,l � H
t−1,l

α sλt,l + � H
t−1,lΦl(t− 1) � t−1,l

Φl(t− 1) � . (18)

Since the denominator on the second line is a scalar, we can avoid
the inverse matrix computation.
By reconstructing the above Bayesian adaptive dereverberation

algorithm based on (18) along the same lines as [7, Chapter 9], we
finally reach the following algorithm. We may see that the time-
frequency dependent weights are determined based on clean speech
power spectrum { sλt,l}0≤l≤L−1.

Weighted RLS based adaptive dereverberation algorithm
The procedures 1 to 2-(b) are common to the above
Bayesian adaptive dereverberation algorithm.

2-(c) Update the mean � l(t − 1) and covariance ma-
trix Φl(t− 1) of the RRC posterior distribution
and gain vector � l(t) for each l ∈ {0, · · · , L−
1} according to the following update rules:

� l(t) =
Φl(t− 1) � t−1,l

α sλt,l + � H
t−1Φl(t− 1) � t−1,l

(19)

� l(t) = � l(t− 1) + � l(t)ŝ
∗
t,l (20)

Φl(t) =
Φl(t− 1)− � l(t) � H

t−1,lΦl(t− 1)

α
. (21)

2.4. Experiment on adaptive speech dereverberation

We conducted an experiment to examine the convergence perfor-
mance of our proposed adaptive dereverberation algorithm. We took
Japanece utterances spoken by 20 speakers (10 male and 10 female)
from the ASJ-JNAS database. The acoustic signals of the individ-
ual utterances were truncated up to 15 seconds. Each signal was
convolved with two-channel RIRs measured in the room depicted in
Fig. 1, where we used the RIRs for position 1. For each frequency-
band index l, the regression order Kl was set so as to cover the
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Fig. 2. Mean MFCC distance (MMD).
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Fig. 3. Mean MFCC distance improvement (MMDI).

room’s reverberation time. The forgetting factor was set at α =
0.99. The dereverberation results were evaluated in terms of the mel-
frequency cepstral coefficient (MFCC) distances between the clean
speech signals and test signals, where the test signals were either
reverberant or dereverberated signals.

Fig. 2 shows the ensemble average of the MFCC distances for all
the speakers. The corresponding improvement gained by the dere-
verberation is plotted in Fig. 3. It can be seen that the proposed
method began to improve the mean MFCC distance in 2 seconds,
and attained convergence in 5 seconds. On the basis of this result,
we may conclude that the proposed algorithm converges relatively
fast and greatly reduces the mean MFCC distance in a steady state.

3. SPEAKER-POSITION CHANGE DETECTION

Although the adaptive dereverberation method proposed in Section 2
may be able to track slow changes in RIRs, it cannot keep up with
the sudden RIR changes typically caused by speaker movement and
change. Fig. 4 exemplifies this problem. Fig. 4 is an example of
the MFCC distance improvement gained with the above method for
35-second observed signals, which include a speaker change at 15
seconds. The first 20-second and remaining 30-second parts respec-
tively consist of male speech uttered at position 1 in Fig. 1 and fe-
male speech uttered at position 2. 10 seconds was needed to return
to the steady state. This long delay in tracking is attributed to the fact
that the method estimates RRCs based on both current and previous
data. Therefore, in order to catch up with sudden RIR changes more
quickly, it is essential to detect changes in speaker position and and
reinitialize the RRC estimates.

3.1. Proposed speaker-position change detection method

Let us investigate what happens to signals dereverberated with the
method described above when a speaker position changes during the
observation. Fig. 5 shows the dereverberated speech waveform for
the same observation data as those used in Fig. 4. We can see that
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Fig. 4. MFCC distance improvement (MDI) without speaker-
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Fig. 5. Dereverberated speech waveform corresponding to the MDI
in Fig. 4.

the power of the dereverberated signal was amplified immediately
after the speaker changed. This fact may be explained based on the
likelihood ratio test, however we omit the details owing to the space
limitation. On this basis, we propose the following speaker-position
change detection method.

We define the smoothed short-time powers of the observed and
dereverberated speech signals respectively as

Px(t) =β
L−1�

l=0

|x(1)
t,l |2 + (1− β)Px(t− 1) (22)

Ps(t) =β

L−1�

l=0

|ŝt,l|2 + (1− β)Ps(t− 1), (23)

where β is a smoothing constant. The proposed method determines
that the speaker position has changed at frame t if Px(t)/Ps(t) < δ,
where δ is a threshold.

3.2. Experiment on adaptive speech dereverberation and speaker-
position change detection

We conducted an experiment to assess the overall performance of
the proposed method. The same clean speech signals were used as
in the experiment described in Section 2.4. The proposed method
was tested 20 times. In each test, one of the 15-second male (fe-
male) speech signals was convolved with the RIRs for position 1 in
Fig. 1, while one of the 20-second female (male) speech signals was
convolved with those for position 2. These two reverberant signals
were then concatenated to synthesize a single 35-second reverberant
signal. The system parameters were set at β = 0.99 and δ = 0.2.
In all of the tests, the proposed method successfully detected the

change of speaker. Fig. 6 shows the ensemble average of the MFCC
distance improvements. It is clear that the proposed method attained
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Fig. 6. Mean MFCC distance improvement (MMDI) for observation
data including speaker change obtained by the proposed method.

convergence again in 5 seconds after the change of speaker. The
drop in the mean MFCC distance improvement immediately after
the speaker change would be mitigated by using prior knowledges
about room acoustics [6].

4. CONCLUSION

This paper described a method for adaptive speech dereverberation
and for detecting changes in speaker position. The proposed method
estimates RRCs with the weighted RLS algorithm. Futhermore,
if speaker position changes, the proposed method detects these
changes and reinitializes the RRC estimates. The effectiveness of
the proposed method was confirmed experimentally. Future work
will include a comprehensive evaluation of the proposed method.
The integration of this approach with adaptive noise suppression and
signal separation methods is also a subject for future study.
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