
STRATEGIES FOR MODELING REVERBERANT SPEECH IN THE FEATURE DOMAIN

Armin Sehr and Walter Kellermann

Multimedia Communications and Signal Processing,
University of Erlangen-Nuremberg

Cauerstr. 7, 91058 Erlangen, Germany
Email: {sehr,wk}@lnt.de

ABSTRACT

The length of the room impulse response characterizing the acous-

tic path between speaker and microphone is significantly larger than

the length of the analysis window used for feature extraction in au-

tomatic speech recognition (ASR) systems. Therefore, reverberation

caused by multi-path propagation of sound waves from the speaker

to distant-talking microphones has a dispersive effect on speech fea-

ture sequences. This dispersive effect causes a mismatch between

the input speech and the acoustic models of the recognizer, usually

trained on clean speech, and leads to a significant reduction of recog-

nition performance. In this contribution, different strategies for ob-

taining acoustic models capturing the dispersive effect of reverbera-

tion are investigated in terms of modeling accuracy, flexibility with

respect to changing reverberation conditions, effort for obtaining the

reverberation representation and decoding complexity.

Index Terms— Reverberation, acoustic modeling, distant-

talking ASR, robust ASR

1. INTRODUCTION

Robust distant-talking ASR is desirable for many applications, like

seamless human/machine interfaces, speech dialogue systems, and

automatic meeting transcription. However, the reverberation caused

by multi-path propagation of sound waves from the source to the

distant-talking microphone leads to a mismatch between the input

utterances and the acoustic model of the recognizer, usually trained

on close-talking speech. Therefore, the performance of ASR systems

is significantly reduced [1, 2] if no countermeasures are taken.

Reverberant speech can be described by a convolution of clean

speech with the Room Impulse Response (RIR) characterizing the

acoustic path from the speaker to the microphone. The length of

the RIR, typically ranging from 200 ms to 1000 ms, significantly ex-

ceeds the length of the analysis window used for feature extraction

in ASR systems, typically ranging from 10 ms to 40 ms. Therefore,

the time-domain convolution is not transformed into a simple multi-

plication in the short-time frequency transform (STFT) domain. In-

stead, reverberation still has a dispersive effect in the STFT domain

and also in STFT-based feature domains.

This dispersive effect cannot be captured by traditional ’intra-

frame’ model adaptation techniques. Instead, information of the pre-

vious frames has to be exploited by the acoustic models. Different

strategies have been proposed to obtain an acoustic model capable

of capturing the dispersive effect. Possibly the most straightforward

way is to use reverberant training data to train conventional Hidden
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Markov Models (HMMs). To reduce the effort for data collection,

clean training data can be convolved with RIRs to obtain the rever-

berant data as suggested in [3, 4]. Instead of performing a complete

training on reverberant data, the mean vectors of clean HMMs can

be adapted to the reverberation conditions of a certain room by tak-

ing the means of the preceding states into account [5, 6]. These

approaches are based on describing the reverberant feature sequence

by a convolution of the clean-speech feature sequence with a feature-

domain RIR representation in the melspectral (melspec) domain.

The disadvantage of all the aforementioned approaches based on

adjusting the parameters of conventional HMMs is the conditional

independence assumption underlying the HMMs. This assumption

states that the current feature vector only depends on the current state

and not on the previous feature vectors. Therefore, conventional

HMMs cannot make use of the relationship between neighboring

frames caused by reverberation. To overcome this limitation, adap-

tation of the mean vectors in each frame based on first-order linear

prediction has been proposed in [7]. An acoustic model, consisting

of a combination of conventional HMMs capturing the clean speech

and a reverberation model capturing the effect of reverberation on the

feature sequences has been proposed in [8]. A third possibility to ac-

count for the inter-frame dependencies due to reverberation is using

HMMs with conditional densities, e.g. [9]. However, the authors are

not aware of any approach using conditional-density HMMs explic-

itly for describing reverberant speech.

In this contribution, the aforementioned approaches for acoustic

modeling of reverberant feature vector sequences are investigated

in terms of modeling accuracy, flexibility with respect to changing

reverberation conditions, effort for obtaining the reverberation rep-

resentation and decoding complexity. The paper is structured as fol-

lows: The characteristics of reverberant speech in the feature domain

are described in Sec. 2. The different strategies for modeling these

characteristics are evaluated and compared in Sec. 3 and conclusions

are presented in Sec. 4.

2. CHARACTERIZATION OF REVERBERANT SPEECH

This section describes the characteristics of reverberant speech in the

feature domain. In the following, we will consider Mel Frequency

Cepstral Coefficients (MFCCs). Since most approaches described in

Sec. 3 use melspectral (melspec) or logarithmic melspectral (log-

melspec) features to capture the dispersive effect of reverberation,

we will also use these features which are intermediate stages in the

MFCC computation.

Fig. 1 compares a) the clean and b) the reverberant feature vector

sequences corresponding to the utterance ”four, two, seven” in the

melspec domain. The clean sequence a) exhibits a short period of

silence before the plosive /t/ in ”two” (around frame 52) and a region
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Fig. 1. Melspec feature sequences of the utterance ”four, two, seven”

in dB color scale a) clean utterance, recorded by a close-talking mi-

crophone, b) reverberant utterance, recorded by a microphone four

meters away from the speaker, c) approximation of the reverberant

utterance according to (2).
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Fig. 2. RIR a) h(n) in the time domain, b) hmel(m) in the melspec

domain (dB color scale), c) hmel(l, m) for l = 12 in the melspec

domain (dB scale)

of low energy for the lower frequencies at the fricative /s/ in ”seven”

(around frame 78). These are filled with energy from the preceding

frames in the reverberant case (subfigure b)). This illustrates that the

reverberation has a dispersive effect on the feature sequences: the

features are smeared along the time axis so that the current feature

vector depends strongly on the previous feature vectors. We will

evaluate in Sec. 3 whether the different strategies are able to capture

these inter-frame dependencies.

The dispersive effect can be explained by the fact that the typi-

cal length of an RIR is much longer than the frame length used for

feature extraction as discussed in Sec. 1 and illustrated in Fig. 2 for

the initial part of an RIR. Therefore, the time-domain convolution

x(n) = h(n) ∗ s(n) (1)

of the clean-speech signal s(n) and the RIR h(n) cannot be ex-

pressed by a multiplication in the STFT domain but rather by a con-

volution in each frequency bin. This relationship can be approxi-

mated by a convolution in the melspec domain [10]

xmel(l, k) ≈

M−1∑

m=0

hmel(l, m) smel(l, k −m) (2)

as illustrated in Fig. 1 c), where l and k are the feature and frame in-

dices, respectively. Due to the inherent approximations of (2), acous-

tic models based on (2) exhibit slightly more variability and thus
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Fig. 3. Block diagram of HMM training with synthetically reverber-

ated training data

slightly less discrimination capability than acoustic models based on

the exact convolution (1) [10].

In general, there are two approaches how to capture reverber-

ation in the feature domain. The first approach is based on all-zero

(AZ) modeling according to (2), where the reverberant feature vector

xmel(l, k) is given as the weighted sum of the clean-speech feature

vectors smel(l, k−m) in the melspec domain. Alternatively, all-pole

(AP) modeling according to

xmel(l, k) ≈ hmel(l, 0) smel(l, k) +

I−1∑

i=1

amel(l, i) xmel(l, k − i) (3)

can be used where the reverberant part in xmel(l, k) is given

as a weighted sum of the previous reverberant observations

xmel(l, k − i). Since in geometrical acoustics reverberation is in-

terpreted as multiple delayed and attenuated copies of the desired

signal [11], AZ modeling captures exactly the physical mechanism

of reverberation generation. Therefore, it can describe reverbera-

tion extremely accurately. Since the impulse response of an arbi-

trary minimum-phase filter (evaluation of several RIRs showed that

RIR representations in the melspec domain are usually minimum-

phase) can be approximated by an AP filter of order I [12], rever-

beration can in principle also be described with high accuracy by an

AP model. However, if only first-order AP models are used as in

[6, 7], the feature-domain RIR representation is approximated by a

single exponential decay in each mel channel, providing only a basic

approximation as depicted in Fig. 2 c).

3. EVALUATION OF MODELING STRATEGIES

In this section, different strategies for obtaining acoustic models cap-

turing the dispersive effect of reverberation on speech feature se-

quences are compared in terms of modeling accuracy, modeling as-

sumptions, effort for obtaining the reverberation representation and

decoding complexity.

3.1. Training conventional HMMs on reverberant data

By training conventional HMMs with data recorded in the target

environment, the best acoustic models possible with conventional

HMMs are obtained since all parameters of the HMMs are adjusted

to the reverberation conditions in the target room. Therefore, rever-

berant training is usually used as a reference for the recognition rates

achievable in reverberant environments. To reduce the enormous ef-

fort of collecting training data for each target environment, [3] pro-

poses to convolve clean test data with RIRs measured in the target

environment. Thus, slightly less accurate acoustic models are ob-

tained with lower effort [4] compared to recorded training data. This

approach is illustrated in Fig. 3. But still measurements of RIRs and

a complete model training are required.

Due to the conditional independence assumption, HMMs are not

able to model the inter-frame dependencies introduced by reverbera-

tion. Therefore, conventional HMMs cannot use the observed previ-

ous feature vectors to capture the effect of reverberation even if they

are trained on reverberant speech. Instead, a certain reverberantly-

trained HMM is only able to describe reverberation by averaging
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Fig. 4. Block diagram of HMM adaptation

over the reverberation corresponding to the previous feature vectors

from all training utterances used for training the respective HMM.

By limiting these training utterances to a certain left context, this

average will become more specific. Therefore, reverberant training

benefits from context-dependent HMMs like cross-word triphones.

Whenever reverberant energy from preceding frames not covered by

the left context has a major influence on the current feature vector,

skewed or even multi-modal densities may result. Therefore, the

modeling accuracy can be significantly increased by using several

Gaussian mixtures for the HMM output densities. The inability of

HMMs to model inter-frame dependencies can be partly remedied by

adding dynamic features. However, the dynamic features can only

capture dependencies across a few frames while reverberation causes

dependencies across a large number of frames.

3.2. Adapting conventional HMMs to reverberation

The effort for obtaining reverberation-robust acoustic models can be

reduced by adapting conventional clean-speech HMMs to reverber-

ation. Based on a feature-domain reverberation representation and

the melspec convolution (2), the HMM parameters are adjusted as

illustrated in Fig. 4. Using (2) and assuming that neighboring fea-

ture vectors smel(l, k) are statistically independent, the exact output

densities of the adapted HMMs could be obtained by convolving the

densities of the clean-speech HMMs. Since the calculation of the

resulting densities is mathematically intractable [13], adaptation of

only the mean values is proposed in [5] and [6] according to

mx,mel(l, q) =
∑

p

γmel(l, p) ms,mel(l, q − p) , (4)

where ms,mel(l, q) and mx,mel(l, q) are the means of the clean-

speech HMM and the adapted HMM for state q and feature l in the

melspec domain, respectively, and γmel(l, p) is a state-level repre-

sentation of the reverberation. The state-level reverberation repre-

sentation γmel(l, p) is obtained in [6] by estimating the reverberation

time T60 during recognition. Modeling the melspec representation

hmel(l, m) of the RIR as a single exponential decay, γmel(l, p) is

obtained by integrating hmel(l, m) over the average duration of the

preceding states. A Maximum Likelihood (ML) estimation approach

based on a few calibration utterances with known transcription is

used in [5] to determine γmel(l, p).

Like the approaches of Sec. 3.1, the adapted HMMs cannot

make use of the inter-frame dependencies caused by reverberation.

Therefore, the contribution of the preceding frames can only be cap-

tured in average over the preceding states of the current HMMs and

the left-context HMMs. Since the sequence of the preceding states

is not known during adaptation, the adaptation is only based on an

average sequence of preceding states. Furthermore, the inherent ap-

proximations of the melspec convolution may lead to a slight mis-

match in the adaptation. Thus, the reverberation capture is slightly

less accurate than with reverberant training (Sec. 3.1), and the recog-

nition rates reported in [5, 6] are slightly lower than for matched

reverberant training.

3.3. Frame-wise adaptation of conventional HMMs

One possibility to model inter-frame dependencies is to adapt con-

ventional clean-speech HMMs at each frame (see Fig. 5 b)) using
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last
frame?

no
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init score matrix
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Fig. 5. Flow chart for HMM adaptation a) according to [5, 6]

(Sec. 3.2) and b) according to [7] (Sec. 3.3).
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Fig. 6. Structure of a REMOS-based recognizer according to [8].

a first-order AP model as suggested by [7]. Here, the means of all

relevant HMM states are adapted according to

mx,mel(l, q) = hmel(l, 0) ms,mel(l, q) + amel(l) xmel(l, k − 1) , (5)

where hmel(l, 0) is the melspec RIR representation for feature l and

frame 0, amel(l) is the AP coefficient, and xmel(l, k−1) is the obser-

vation of the previous frame in the melspec domain. Thus, the infor-

mation provided by the previous observed feature vector xmel(k−1)
is utilized and the reverberation is modeled by a strictly exponential

decay. Since the exponential decay provides only a basic approxi-

mation of the reverberation as illustrated in Fig. 2 c), the recognition

rates reported in [7] are slightly lower than that of matched rever-

berant training according to Sec. 3.1. The parameters hmel(l, 0) and

amel(l) are readily obtained by ML estimation based on a few cal-

ibration utterances. The drawback of the approach is the enormous

computational complexity for adapting the HMMs in each frame

(see Table 1).

3.4. Combined acoustic model – REMOS

A combined acoustic model consisting of a clean-speech HMM net-

work and a statistical ReVerberation Model (RVM) η as illustrated

in Fig. 6 is used in the REMOS (REverberation Modeling for Speech

recognition) concept [8] for capturing the inter-frame dependencies

due to reverberation. In the melspec domain, the clean-speech HMM

output sequence smel(k) and the output sequence hmel(m, k) of the

reverberation model are combined by the melspec convolution (2)

in order to describe the reverberant feature vector sequence xmel(k)
[8]. The statistical RVM η can be considered as a feature-domain

representation of all possible RIRs for arbitrary speaker and micro-

phone positions in the target room. The RVM exhibits a matrix struc-

ture where each row corresponds to a certain mel channel and each

column to a certain frame as shown in Fig. 7. Each matrix element

is modeled by a Gaussian Independent Identically Distributed (IID)

random process. For simplicity, the elements are assumed to be mu-

tually statistically independent [8]. The combined acoustic model

used in REMOS can be considered as an AZ model with a stochas-

tic time-variant system function and an independent non-stationary

excitation. Thus, the inter-frame dependencies can be modeled very

accurately. For recognition, an extended version of the Viterbi algo-
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convolution reverberation inter-frame mean var. estimation decoding complexity

representation dependencies complexity qual. quantitative

3.1 TD AZ - + + - - ++ O(QN(P + L))
3.2 [5] MD AZ - + - + ++ O(QN(P + L)
3.2 [6] MD AP, 1st order - + - ++ ++ O(QN(P + L))
3.3 MD AP, 1st order AP, 1st order + - + - O(QN(P + 23 · L)
3.4 MD AZ AZ + + + - - O(QN(P + (31 + 4M)L))

Table 1. Comparison of different modeling strategies. TD: time domain, MD: melspec domain, AZ: all-zero model, AP all-pole model, var.: variance, O():
order of, Q = 176: number of states in HMM network, P = 2.56: average number of predecessor states, L = 24: number of features, M = 50: number of
frames in the reverberation model, N = 300: number of frames of the utterance, the given numbers are (typical) values for the digit recognition task used in
[8], for large-vocabulary continuous speech recognition, Q and P will be significantly higher.

reverberation frame m

mel channel l

Fig. 7. Reverberation model η for observation frame k.

rithm [8] is employed to find the most likely path through the net-

work of HMMs. The reverberation model η is taken into account by

an inner optimization operation determining the most likely contri-

bution of the current HMM state and the reverberation model to the

current reverberant observation vector xmel(k). Thus, recognition

rates significantly higher than those of matched reverberant training

according to Sec. 3.1 are achieved in [8]. However, the approach

is so far only implemented for melspec features, and the inner opti-

mization significantly increases the decoding complexity.

3.5. Comparison

Table 1 qualitatively compares the most important properties of the

above mentioned approaches. All approaches except the reverberant

training method (Sec. 3.1) capture the dispersive effect of reverber-

ation by performing a melspec convolution of a clean-speech HMM

with a feature-domain reverberation representation. While 3.2 [6]

and 3.3 use a first-order AP model for describing the reverberation,

the other approaches are based on an AZ model which is closer to

the physical reverberation mechanism. The approaches which are

solely based on conventional HMMs (3.1 and 3.2) cannot capture

the inter-frame dependencies caused by reverberation. 3.3 captures

these dependencies by first-order AP models, and 3.4 uses an AZ

model. While the approaches 3.2 and 3.3 only adjust the means, the

approaches 3.1 and 3.4 also adjust the variances of the output densi-

ties. The complexity for estimating the reverberation representation

and the decoding complexity are compared in the last two columns

of Table 1. Note that the estimation complexity indicates how flexi-

bly the approach can be used in changing acoustic environments.

4. SUMMARY AND CONCLUSIONS

Different approaches for capturing the dispersive effect of reverber-

ation on the speech feature sequences used for ASR have been com-

pared in this contribution in terms of modeling accuracy, effort for

the determination of the reverberation representation, and decoding

complexity. While reverberant training of HMMs (3.1) can provide

very accurate acoustic models, the high effort for obtaining suitable

training data for the target environment makes this approach rela-

tively inflexible. Adaptation of conventional HMMs (3.2) requires

less effort for the adjustment to reverberation but is also less accu-

rate as only the means of the HMMs are adapted. Furthermore, all

approaches based on conventional HMMs (3.1, 3.2) cannot make

use of the inter-frame dependencies caused by reverberation. These

dependencies can be captured by frame-wise adaptation of HMMs

(3.3), or a combined acoustic model consisting of an HMM and a

reverberation model (3.4). Since the reverberation representation

can be estimated with very little effort for both 3.3 and 3.4, these

approaches can be used very flexibly in changing acoustic environ-

ments and achieve very promising recognition rates. The combined

acoustic model (3.4) even outperforms matched reverberant training.

However, both approaches (3.3, 3.4) exhibit an increased decoding

complexity. Therefore, it is dependent on the application, which of

the evaluated strategies is most suitable.
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