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ABSTRACT

A voice search system requires a speech interface that can correctly

recognize spoken queries uttered by users. The recognition perfor-

mance strongly relies on a robust language model. In this work, we

present the use of multiple data sources, with the focus on query logs,

in improving ASR language models for a voice search application.

Our contributions are three folds: (1) the use of text queries from

web search and mobile search in language modeling; (2) the use of

web click data to predict query forms from business listing forms;

and (3) the use of voice query logs in creating a positive feedback

loop. Experiments show that by leveraging these resources, we can

achieve recognition performance comparable to, or even better than,

that of a previously deploy system where a large amount of spoken

query transcripts are used in language modeling.

Index Terms— language modeling, voice search, query log,

click data

1. INTRODUCTION

Voice search [1] is an integration of speech recognition and search

technologies that allows users to effectively access information using

voice. The role of speech recognition therein is essentially one that

transcribes a spoken query into text, either in form of one-best or

n-best recognition results. The recognized queries are then used as

input to an information retrieval system. Such speech interfaces for

search applications have emerged into consumer market in recently

years [2, 3, 4]. One example, which we focus on in this work, is

Live Search for Windows Mobile (LS4WM) [1], a speech-enabled

application operating in the domain of local search, whose goal is to

return a user with the most relevant business listings given queries

spoken by the user.

In no small part, the recognition performance of LS4WM (or

similar systems) relies on a robust language model (LM), the con-

struction of which is a challenging task due to the sheer volume of

user queries and the lack of sufficient, in-domain training examples.

The ideal training data for LS4WM, i.e., transcripts of spoken local

search queries, is costly to obtain at a large scale. Business listings,

on the other hand, are easily accessible from a database, but listing

forms are often different from how users formulate queries [3, 5].

In [5], we presented a machine translation approach that predicts

query forms from listing forms. The performance of the prediction,

however, still heavily depends on a substantial amount of transcribed

data.

Fortunately, there are various data sources from relevant do-

mains that we can leverage for our task, thanks to the exploding pop-

ularity of text search. In analogy to using web documents to model

conversational speech [6], we exploit a variety of search query logs

to model spoken queries. In addition to a business listing database,

the resources of our interest include (1) web local search query log

with click-through data; (2) LS4WM text query log; and (3) LS4WM

voice query log. Note that throughout this paper all data sources are

from the local search domain unless otherwise stated.

Given the above resources, our goal is to construct individual n-

gram LMs from each data source, and to create a combined LM via

model interpolation. In creating each individual LM, we investigate

the following approaches:

• Use web and mobile search queries as training data for lan-

guage modeling;

• Train a translation model [5] from web search click data.

Then use the translation model to generate pseudo queries

from listing names for language modeling.

• Use n-best recognition results, together with user confirmed

ones, in maximum-likelihood and discriminative training of

an LM.

Once individual LMs are trained, we create a single interpolated

backoff model [7] in which each n-gram probability is linearly inter-

polated from the probabilities of these LMs, and the backoff weights

are re-normalized accordingly. The rest of the paper is organized

as follows: Section 2-4 will discuss the above three aspects respec-

tively. Section 5 presents experiments and recognition results, fol-

lowed by conclusions.

2. LANGUAGE MODELING USING TEXT QUERY LOGS

Since the training data that best fits our interest is transcripts of spo-

ken queries, the first attempt one would make is to use text queries

in similar domains as a substitute. In this work, we collect such data

from two sources. The first is a text query log from local.live.com,

a web-based local search service, and we refer to this dataset as web
text. In addition to user search queries, this log also contains click-

through information. Each click instance is recorded in form of a

(query, listing) pair. To maximally filter out queries that are out of

the local search domain, we extracted only queries that resulted in

clicks. The intuition is that a query not meant for local search would

probably trigger irrelevant search engine results from local.live.com,

and the user is less likely to click on any of them. Our second data
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source is a text query log from LS4WM, which will be referred to

as mobile text. This dataset contains queries that were typed, as op-

posed to spoken, to the local search application on Windows Mobile.

For text queries to be useful in language modeling, the fore-

most task is text normalization which is to convert query words into

“canonical” forms consistent with those used in official business

names. In both datasets, we observe many inconsistent represen-

tations of the same business name, mostly due to spelling errors. For

example, the business ABC Quick Mart is mistakenly referred to as

“ABC Quik Mart” in some queries. A global substitution of ”Quick”

for ”Quik” is inappropriate because the word “Quik” does exist in

other business names. It is also prohibitively time-consuming to

manually specify what to do in each specific context. Therefore, we

have developed an automated process based on transduction. This

process uses the following steps:

1. A ”gold standard” language model is built from the business

listing database that has been previously cleaned.

2. A set of possible word level substitutions is specified, e.g.,
allowing ”Quick” to be substituted for ”Quik”.

3. A transducer is built such that the score assigned to any path

is the gold-standard language model score of the output-side

word sequence. Each input symbol is allowed to produce it-

self on the output side, as well as any substitutions specified

in the previous step.

By transducing noisy text queries in this manner, we obtain on the

output side the sequence of words that is consistent with the allowed

substitutions, and that has the highest language model probability.

A query is untransducable and hence discarded if it contains a word

out of the business listing vocabulary and if the OOV word is not

assigned any substitutions. Our method is described in more detail

in [1] and [8].

After text normalization, query words in both datasets are con-

fined to the business listing vocabulary but their query distributions

are rather different. Table 1 shows the most frequency queries from

the web text and mobile text datasets respectively, as well as those

from a random set of LS4WM spoken query transcripts. Notice that

mobile text seems to be more relevant to our target domain, which is

not surprising since mobile text comes from the same mobile appli-

cation as the spoken queries. On the other hand, web text is typically

larger than mobile text if collected within the same time frame. In

other words, while mobile text is closer to in-domain data, web text
takes less time to collect to a desired size. In Section 5, we will show

recognition performance of using these two data sources, with varied

amounts, in language modeling.

3. TRANSLATION MODEL TRAINING
WITH CLICK DATA

Using existing user queries as LM training data has the limitation

that it does not generalize to business listings that have not been

asked for. In fact, there are 20M entries in our business listing

database; what users have asked for may only constitute a small

portion of it. In [5], we presented a machine translation approach

that “translates” business listings to pseudo queries. Our translation

model is based on n-grams, where each “gram” is a pair of query

word (or phrase) and listing word (or phrase). Given a corpus of

parallel sentences in form of (query, listing) pairs, we discover the

best alignments of the sentence pairs and estimate the n-gram model

Web text Mobile text Mobile Voice
Hotels Pizza McDonald’s
Restaurants Wal-Mart Wal-Mart
Real Estate Starbucks Pizza
Apartments Best Buy Movies
Motels Target Starbucks
Newspaper Pizza Hut Mexican Restaurant
Newspapers Home Depot Target
Hotels Motels & Hotels Best Buy
Churches Restaurants Burger King
News GameStop Pizza Hut

Table 1. Top ten local search queries (after text normalization) from

three different data sources

in an iterative fashion using the EM algorithm. Once trained, we

“translate” all business listings into query forms, which are used as

training data in language modeling. In [5], we observed significant

perplexity reduction on a spoken query dataset by using such psuedo

queries, in addition to business listings and spoken query transcripts,

as LM training data.

The translation model used in our previous work [5] was trained

on (query, listing) pairs where queries were manually transcribed

from voice search data, and where listings were retrieved from a

database based on tf-idf scores. This approach still depends on tran-

scribed data which is again difficult to obtain in a substantial size.

Moreover, since the listing counterpart of a query is heuristically

discovered which may or may not be the true listing a user asks for,

the sentence pairs collected in this way can be noisy.

With the availability of web click data, however, we are able to

harvest sentence pairs for training a translation model in an auto-

mated fashion and presumably in a cleaner form. As mentioned in

Section 2, the query log of local.live.com contains user click infor-

mation in form of (query, listing) pairs. The click data is in essence

implicit user feedback, in which each click instance is a weak indi-

cation of relevance. By inspecting the click data as a whole, we can

discover strongly relevant (query, listing) pairs. For example, if most

query instances “P. F. Chang’s Restaurant” clicked on the listing P.
F. Chang’s China Bistro, it is likely that the latter listing is the most

relevant one to the former query. When using these click instances

as training sentence pairs, the translation model is able to learn that

the phrase “China Bistro” can be translated to “Restaurant”. On

the other hand, categorical queries such as “Restaurant” may click

on various listings such as Denny’s and P. F. Chang’s China Bistro.

Such sentence pairs are not desired since they often lack a strong cor-

respondence between query and listing words/phrases, which would

introduce noise in learning the translation model.

To select click instances that are most useful as training sentence

pairs, we resort to the point-wise mutual information criterion [9].

For notational convenience, we use q to denote a query, d a listing,

and cq,d the click count associated with (q, d). Furthermore, we use

cq and cd to represent query and listing counts respectively, and N to

represent the total number of click instances. The point-wise mutual

information (weighted by frequency) is computed as

I(q, l) = p(q, l) log
p(q, l)

p(q)p(l)
=

cq,l

N
log

cq,lN

cqcl
(1)

We select a click instance (qi = q, li = l) as training data if its
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I(q, l) > α, where α is a threshold. All click instances satisfying

this constraint will be used as training examples despite some of

them may have the same (q, l) value. In other words, the value pair

(q, l) is implicitly weighted by its count in our learning process.

Once the sentence pairs are selected, we normalize the queries

by transduction as described in Section 2, and we follow our previ-

ous work [5] in training the n-gram based translation model. One

key difference from [5] is that we can afford to create higher-order

phrases in both source and target languages owing to the drastic in-

crease in the amount of training sentence pairs. This gives the trans-

lation model the power to capture long-distance patterns that would

be otherwise difficult to model. For example, it would be benefi-

cial to treat Jack In The Box as a phrase and hence a single “gram”

as opposed to a sequence of words, since it as a whole is a busi-

ness entity name. Given sufficient data, we are able to automatically

discover such phrases. This is achieved by computing the point-

wise mutual information between words I(w, w′). A sequence of

query/listing words wm:n is considered a phrase if all I(wi, wi+1),

i = m, . . . , n − 1, are above a threshold.

4. CREATING A FEEDBACK LOOP
WITH VOICE QUERY LOG

Another data source we investigate in this work is the voice query

log from a deployed LS4WM system [1]. Specifically, when user

speakers a query to an LS4WM client, a confirmation screen will

be displayed that contains the n-best recognition results. The user

can select the correct hypothesis and then the search engine will be

triggered by the user’s selection. In this process, both the n-best

hypotheses and users’ confirmations are logged, which we can take

advantage of to create a positive feedback loop.

On natural way of using this resource is to train an LM from user

confirmed recognition results. Although such data represents what

the deployed ASR system is able to recognize correctly, it provides

information, at least partially, about the prior distribution of voice

search queries. Notice that this prior information is different from

that of web/mobile text queries, and is missing in translated pseudo

queries. In this regard, using the confirmed recognition results, if

available, can be a good complement to the other data sources we

have explored.

Furthermore, we use this data source to train an n-gram LM dis-

criminatively, where we assume that the recognition result clicked

by the user is the ground truth while other n-best alternates are com-

petitors. There are multiple ways that we can leverage such data for

discriminative training e.g., re-estimating n-gram probabilities with

a discriminative criterion [10] or learning a discriminative model di-

rectly [11]. In this work, we adopt the former approach and we op-

timize n-gram LM parameters that maximize the conditional likeli-

hood objective:

p(qc|x) =
p(x|qc)p(qc)∑
q∈Q p(x|q)p(q)

(2)

Here x denotes acoustics and qc denotes user clicked hypothesis out

of a list of n-best recognition results Q. In maximum conditional

likelihood (MCL) training, we keep the acoustic model p(x|q) fixed

and only update parameters of the language model p(q). In practice,

we use an LM scaling factor β to adjust the importance of the LM

with respect to the acoustic model. In other words, p(q) is replaced

by pβ(q) in the above objective function. We apply stochastic gradi-

ent descent to update n-gram probabilities while keeping the backoff

weights fixed. In application time, the MCL LM is used to rescore

the n-best alternates generated by the same ASR engine.

5. EXPERIMENTS AND RESULTS

We evaluate our LMs by measuring speech recognition performance

on a test set of 4388 real spoken queries collected from LS4WM.

We use a fixed acoustic model and experiment with LMs trained

from different data sources. There are two baseline LMs in this

work: one is trained from 20M listing names from a business list-

ing database; the other is the LM used in a previous deployed system

which was trained from a combination of listing names and manually

transcribed spoken queries [1]. The one-best and n-best accuracies

as well as acceptance rates of these two baseline LMs are reported

in the first two rows of Table 2. Note that an n-best list contains at

most 10 hypotheses with a high enough confidence, and there can be

n < 10 in some cases. An utterance is rejected (thereby not counted

as “accepted”) if no hypothesis satisfies the confidence constraint.

The focus of our work is to see the performance of LMs that are

trained without using any spoken query transcripts. To this end, we

collected the following datasets for language modeling.

• Web text (W): 10M normalized text queries from local.live.com

that resulted in clicks. The data was collected from a contin-

uous period of time.

• Mobile text (M): 5M normalized text queries from LS4WM

(not necessarily with clicks). This was collected from roughly

the same time period as the web text dataset.

• Translation (R): 21M pseudo queries generated from the busi-

ness listing database based on the translation model described

in Section 3. The translation model was trained on 8.5M

(qi = q, li = l) pairs, with I(q, l) > 7e − 07, selected from

the 10M click instances of local.live.com. We chose such a

threshold as to include those pairs where both the query and

the listing appear exactly once. The discarded pairs mostly

consist of categorical queries.

• Confirmed voice (C): 650K voice search queries correspond-

ing to user clicked recognition results in the deployed LS4WM

system [1]. There is also a list of n-best hypotheses associ-

ated with each confirmed result.

Notice that the amounts of data from the above resources were not

intentionally chosen, but represent all data that is readily available to

us at the time of our experiments.

In our first experiment, we trained LMs using each of the above

data sources alone. The results are reported in the second section of

Table 2. Interestingly, the performance of these LMs is comparable

to that of the deployed one, and this is achieved without the need

of any human transcribe data. This argument, however, does not

apply to the case of confirmed voice, since the gerenation of such

data depends on the deployed system which was trained on human

transcribed data.

To illustrate the effectiveness of using web text and mobile text
respectively for language modeling, we varied the amounts of train-

ing data in both cases. As shown in Figure 1, with a fixed train-

ing set size, the LM trained using mobile text alone yielded signif-

icantly higher recognition accuracy compared with that using web
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LMs 1-best n-best % Accept

Accuracy Accuracy

Listng (L) 48.44 58.81 69.71

Deployed (L+Manual) 53.01 60.62 69.12

Web text (W) 53.39 63.98 73.19

Mobile text (M) 52.60 63.08 73.04

Translation (R) 52.58 63.06 73.06

Confirmed voice (C) 53.10 63.70 72.90

W+M+R 54.57 64.93 73.25

W+M+R+C 55.83 67.62 74.66

L+W+M+R+C 54.79 65.15 73.13

MCL on W+M+R+C 55.95 (67.62) (74.66)

Table 2. One-best accuracies, n-best accuracies where n = 10 (or

n < 10 due to confidence thresholding), and acceptance rates on

4388 voice search queries.

text alone. However, the recognition accuracy of using mobile text
appears to hit a plateau with 2.5M queries, while that of using web
text keeps increasing, and is approximately linear in the log of train-

ing data size. In fact, web text data can be collected with a higher

rate than mobile text, considering the fact that mobile search users

are likely to be outnumbered by web search users.

Given the LMs trained separately on different resources, we cre-

ated a single interpolated backoff model. We simply used equal

weights for all LMs that participate in the interpolation, although

fine-tuning the weights may further improve performance. For ex-

ample, W+M+R in Table 2 means that the LM is an interpolation

of W, M, and R with an equal weight 1/3. As shown in the table,

when all five individual LMs are combined, we achieve a one-best

accuracy of 54.79%. The accuracy is increased to 55.83% when the

listing names are excluded from training.

Finally, we conducted MCL training of the best LM we have,

i.e., W+M+R+C. We then used the MCL LM to rescore the test-set

n-best hypotheses that were produced by an ASR system using the

W+M+R+C LM. The one-best accuracy after rescoring is 55.95%,

which is not a significant improvement. This is likely due to the

mismatch between training and test data. Ideally, the training-set hy-

potheses should be generated from the same system, i.e. the engine

using the W+M+R+C LM. In our case, however, n-best alternates as

well as user clicked results were obtained via user interactions with

a previously deployed system [1].

6. CONCLUSIONS AND FUTURE WORK

In this work, we studied the construction of LMs for spoken query

recognition from different data sources. The most effective resources

include text queries from web and mobile search applications, pseudo

queries generated from a translation model that is trained on web

click data, and user confirmed voice search queries. An interpola-

tion of individual LMs trained on these data sources gives an addi-

tional boost to recognition accuracy, which outperforms a previous

LM trained with transcribed data. In the future, we would like to

refresh our data for discriminative training of the LM. The training

data should be collected from user interactions with an LS4WM sys-

tem with an updated LM.

The authors would like to thank Sarah Zhai for providing neces-

sary data for this work.
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