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ABSTRACT

We consider in this paper the problem of large scale natural

image classification. As the explosion and popularity of im-

ages in the Internet, there are increasing attentions to utilize

millions of or even billions of these images for helping image

related research. Beyond the opportunities brought by unlim-

ited data, a great challenge is how to design more effective

classification methods under these large scale scenarios. Most

of existing attempts are based on k-nearest-neighbor method.

However, in spite of the optimistic performance in some tasks,

this strategy still suffers from that, one single fixed global pa-

rameter k is not robust for different object classes from dif-

ferent semantic levels. In this paper, we propose an alter-

native method, called �1-nearest-neighbor, based on a sparse

representation computed by �1-minimization. We first treat

a testing sample as a sparse linear combination of all train-

ing samples, and then consider the related samples as the

nearest neighbors of the testing sample. Finally, we clas-

sify the testing sample based on the majority of these neigh-

bors’ classes. We conduct extensive experiments on a 1.6
million natural image database on different semantic levels

defined based on WordNet, which demonstrate that the pro-

posed �1-nearest-neighbor algorithm outperforms k-nearest-

neighbor in two aspects: 1) the robustness of parameter se-

lection for different semantic levels, and 2) the discriminative

capability for large scale image classification task.

Index Terms— Image classification, sparsity, �1-nearest-

neighbor, k-nearest-neighbor, WordNet.

1. INTRODUCTION

With the prosperity of the Web, overwhelming amounts of

data are now freely available online. On one hand, it is nec-

essary to develop effective index and search techniques for

directly enhancing user experience in information search and

management [1]. On the other hand, the huge deposit of mul-

timedia data makes it possible to provide solutions to many

problems that were believed to be unsolvable [2].
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In recent years, some attempts of utilizing unlimited Web

image data have been done on different image related research

directions, such as image annotation [3][4], scene recognition

[4], and content-based image retrieval [5]. On the one hand,

the dense sampling of the visual world makes many image re-

lated problems solved without the need for sophisticated algo-

rithms. On the other hand, unlimited images (millions of im-

ages) and classes (thousands different words) bring us more

challenges on how to design effective algorithms under these

large scale scenarios. In fact, most of existing attempts in

large scale are based on k-nearest-neighbor method [3][4][5].

The k-nearest-neighbor method has been widely used

in many computer vision problems, such as interest point

matching [6], pose estimation [7], character recognition [8],

and object recognition [6]. In spite of the success of k-

nearest-neighbor method in both large scale image related

tasks and traditional computer vision problems, its sensitivity

to the value of neighbor number k makes it somewhat limited

when applied to large scale image related problems. First,

the visual space might be too complicated that a single fixed

global parameter is not guaranteed optimal for individual da-

tum. Second, the number of images for different classes is

usually quite diverse, which makes the situation even worse.

Third, an image may belong to multiple classes on different

semantic levels. For example, an image of “flatfish” could be-

long to classes on different semantic levels such as “flatfish”,

“fish”, and “animal”. It is evident that it is not reasonable

to fix k for classes on different semantic levels. Thus, it

is necessary to develop a more robust alternative for these

complicated large scale problems.

Recently, the concept of sparse representation attracts

more and more attention in signal processing and computer

vision owing to its powerful discriminative ability. Sparse

representation is widely used in statistical signal processing

community, whose original goal is to represent and compress

signals. It is computed with respect to an overcomplete dic-

tionary of base elements or signal atoms [9][10]. The result-

ing optimization problem is similar to the Lasso in statistics

[11][12], which penalizes the �1-norm of the coefficients in

the linear combination. Recently, Wright et al. [13] proposed

a robust face recognition method based on this sparse rep-

resentation, which can handle occlusion and corruption well
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and thus achieve striking recognition performance in the face

recognition task.

In this paper, to avoid the sensitivity of parameter selec-

tion in k-nearest-neighbor method and improve the discrimi-

native capability, we propose an alternative method, called �1-

nearest-neighbor, based on a sparse representation computed

by �1-minimization. We first treat a testing sample as a sparse

linear combination of training samples, and then consider the

related training samples as the nearest neighbors of the test-

ing sample. Finally, we classify the testing sample based on

the majority of these neighbors’ classes. In the �1-nearest-

neighbor method, the number of neighbors of a testing sam-

ple is adaptively determined by the �1-norm cost function.

Although there is a parameter, it is much more robust than

the case in k-nearest-neighbor. We conduct extensive exper-

iments on a 1.6 million natural image database on different

semantic levels defined based on WordNet [14]. Experimen-

tal results show the superior discriminative capability of �1-

nearest-neighbor over k-nearest-neighbor in large scale nat-

ural image classification task. The main contribution of this

paper is a near-neighbor-number adaptive method for large

scale natural image classification problem.

2. �1-NEAREST-NEIGHBOR CLASSIFIER

Assume that there are N natural images in the training set,

represented as a matrix X = [x1, x2, · · · , xN ], xi ∈ R
m,

where m is the feature dimension. The class label of the im-

age xi is assumed to be li ∈ {1, 2, · · · , Nc}, where Nc is the

total number of classes. Let us denote the testing image as xt.

2.1. Motivations

The k-nearest-neighbor method has been widely used in re-

cent large scale image related works, such as image anno-

tation, scene recognition, and content-based image retrieval.

With a fixed k, this method first retrieves k nearest neighbors

to the query image xt from the training set, and then sets the

label of xt as the most frequent label of these k nearest neigh-

bors. In spite of the simplicity and effectiveness of k-nearest-

neighbor in many applications, however, under our scenario,

e.g. millions of images and thousands of words, we could not

expect that data are evenly distributed in the data space, and

thus a single fixed global parameter is not guaranteed optimal

for individual datum. Moreover, it is also not reasonable to

fix k for different class labels from different semantic levels.

Another intuitive way to obtain the proper number of

available neighbors for individual testing image is to use the

data reconstruction method. That is, for a testing image xt,

the best coefficients to reconstruct xt with all the training data

are computed by

min
a

‖xt −
N∑

i=1

aixi‖2 (1)

where ‖ · ‖2 is the �2-norm of a vector. However, this solution

is too dense and may easily overfit to the noise in the data.

Sparse coding or sparse representation is a more natural

choice, since it can provide sparse combination of training

data for a testing datum, and also the adaptive neighbor set.

It was proposed in [15] that the human vision system is near

to optimality in the representation of natural scenes only if

optimality is defined in terms of sparsely distributed coding

rather than compact coding. Olshausen et al. [16] employed

Bayesian models and imposed �1 priors to the coefficients ai

for deducing the sparse representation. Instead of using the

generic dictionaries, Wright et al. [13] represented the test

sample in an overcomplete dictionary whose base elements

are the training samples themselves, and achieved striking

performance in the face recognition problem. Beyond small

scale face recognition problem explored in [13], we focus on

the large scale natural image classification problem based on

sparse representation.

2.2. Sparse Representation by �1 Optimization

Sparse coding is to compute the linear sparse representation

with respect to an overcomplete dictionary of base elements.

It is well known that the sparsest representation problem is

NP-hard in general case. However, recent results [9] have

shown that if the solution is sparse enough, the sparse rep-

resentation can be recovered by a convex �1-minimization.

Suppose we have an underdetermined system of linear equa-

tions: x = Dα, where x ∈ R
m is the vector to be approxi-

mated, α ∈ R
K is the vector for unknown reconstruction co-

efficients, and D ∈ R
m×K(m < K) is the overcomplete dic-

tionary with K bases. If the solution for x is sparse enough,

it can be recovered by the following convex optimization:

min
α

‖α‖1, s.t. x = Dα. (2)

In practice, the exact x = Dα may not be satisfied due to

noise and m may be larger than K. To overcome this issue,

Wright et al. [13] proposed to reformulate the reconstruction

relationship as

x = Dα + ζ, (3)

where ζ is the noise term. Then the sparse representation

problem is redefined by minimizing the �1-norm of both co-

efficients and reconstruction error, and turned to solve

min
α′

‖α′‖1, s.t. x = Bα′, (4)

where B = [D, I] ∈ R
m×(K+m) and α′ = [αT , ζT ]T . This

problem is convex and can be transformed into a general

linear programming problem. There exists a globally opti-

mal solution. In our experiments, we convert the original

constrained optimization problem into an unconstrained one,

with an extra regularization coefficient:

min
α′

λ‖α′‖1 +
1
2
‖x − Bα′‖2

2 (5)
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2.3. �1-Nearest-Neighbor Classifier

Based on the sparse representation described as above, the

�1-nearest-neighbor classifier is given as follows:

1. Input: The training data X = [x1, x2, · · · , xN ], xi ∈
R

m. A testing image xt ∈ R
m.

2. Sparse Representation: The sparse representation is

obtained by solving the optimization problem

min
αt

λ‖αt‖1 +
1
2
‖xt − Bαt‖2

2,

where B = [X, I] ∈ R
m×(N+m) and αt ∈ R

N+m.

3. �1-Nearest-Neighbor: The nearest neighbors of the

testing image xt is {xi|αt
i > 0, i = 1, · · · , N}.

4. Output: The label of xt could be set as the most fre-

quent label in the nearest neighbor set.

3. EXPERIMENTS

The proposed algorithm was evaluated for natural image clas-

sification on a 1.6 million image database1 provided by Tor-

ralba et al. [4]. We first introduce the setup of these experi-

ments, and then provide the detailed experimental results.

3.1. Experiment Setup

3.1.1. Data Collection

This database contains 1,608,326 color images of size 32×32

pixels, labeled by 53,650 non-abstract nouns in English,

which are a subset of the lexicon of WordNet. There exist

about 30 images averagely for each word (or label). All im-

ages are crawled from the Web, which are the first images

returned by the online search tools with words as queries.

Each image was first transformed to a 3072-dimensional

vector by concatenating the three color channels. To improve

speed, images were then represented by the first 200 princi-

pal components of the features, followed by a �2 normaliza-

tion for each image. 5000 images randomly selected from the

database are used as testing images, and the other ones are

used as training images.

3.1.2. Classes on Different Semantic Levels

All the words in the database are from the nouns lexicon of

WordNet, and hence we could utilize WordNet to divide all

the words into different semantic levels.

WordNet provides semantic relationships between more

than 110,000 nouns. For simplicity, we reduce the initial

graph-structured relationships between words to a forest-

structured one by only taking the most common meaning of

each word as well as considering only the “IS-A” relation.

1http://people.csail.mit.edu/torralba/tinyimages/
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Fig. 1. The number of images labeled for each word on dif-

ferent semantic levels. The numbers of words on level 7 to

level 13 are 130, 212, 264, 315, 231, 151, and 117, respec-

tively. For each semantic level, words are sorted according to

the number of labeled images.

Those words with exactly the same meaning (in the same

synset in WordNet) are considered as one word. It should be

noted that after merging words with the same meaning, the

number of words in the database is reduced to 36,766. We

use the biggest tree in the reduced word forest in this exper-

iment, whose root is “entity”. This tree has 32,659 words,

and contains most of labels in the database. There is a strict

“IS-A” relation between offspring and forefather on this tree.

For example, “weaverbird” is an “oscine”, and an “oscine” is

an “bird”. All the words on this tree are all “entity”, which is

the root of the tree. Thus, for every image in the database, we

add to it all forefather labels of its original label.

We divide the whole tree into different semantic levels, ac-

cording to the distance between the corresponding node and

the root. For example, we define “entity” as the highest se-

mantic level 18, since there are 18 levels in total; the sons of

“entity” are at level 17; the grandsons of “entity” are at level

16; and so on. We conduct natural image classification task

on different semantic levels respectively. On the one hand, it

is impossible and unnecessary to recognize all objects in the

lowest semantic levels. On the other hand, it is lack of value to

classify images in very high semantic levels, e.g. distinguish-

ing “matter” with “object”. Thus, we conduct experiments

only in the middle semantic levels, i.e. from level 7 to level

13, in which the words with less than 5 offspring words are

also removed. Fig. 1 shows the number of images for each

word on different semantic levels. From Fig. 1 we can see

that the numbers of images belonging to different classes are

quite unbalanced, which makes the problem more difficult.

3.2. Classification Results on Different Semantic Levels

Fig. 2 shows the classification accuracies on different seman-

tic levels, with different parameters, for different classifiers.

From this figure, we can have a serial of conclusions. First,

the performance of k-nearest-neighbor (kNN) algorithm is
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Fig. 2. Classification accuracies on different semantic levels.

Algorithm 1 to 3 represent �1-nearest-neighbor algorithms

with λ being 0.05, 0.1, and 0.2, respectively. Algorithm 4

to 12 represent k-nearest-neighbor algorithms with k being 1,

5, 10, 50, 100, 150, 200, 300, and 500, respectively.

quite sensitive to the parameter k within each semantic level.

Second, the best ks of kNN on different semantic levels are

quite different. kNN prefers larger k on higher semantic lev-

els, while prefers relatively smaller k on lower semantic lev-

els. Third, the �1-nearest-neighbor (�1NN) classier consis-

tently outperforms kNN method on different semantic levels.

Moreover, the performance of �1NN is much less sensitive to

its parameter λ than that of kNN. The �1NN algorithm with

λ being 0.2 cost about 30 seconds on average for one image

using Matlab without any special optimization, on a single

computer with 3.00GHz Intel Xeon CPU and 16G memory.

We believe that great improvements on efficiency could be

achieved if special optimization such as efficient indexing or

parallel computing is adopted.

To show the importance of adaptively choosing the num-

ber of neighbors, we compared three types of experimental

results in Fig. 3: 1) accuracy from the kNN with k being 1,

2) accuracy from �1NN, and 3) accuracy from �1NN and for

the testing images with exactly one neighbor in �1NN (de-

noted as “�1NN(k=1)”). The average number of neighbors is

about 30 for �1NN with λ being 0.1, and about 1/6 testing

images have only one neighbor. The superior performance

of �1NN(k=1) over kNN(k=1) shows that it is very useful to

adaptively determine the number of neighbors in �1NN. We

can see that, �1NN will totally believe the nearest neighbor of

the testing image if it finds that this neighbor is a very reliable

one; otherwise, it will automatically turn to more neighbors.

This strategy makes �1NN more robust in such a complex sce-

nario where a fixed neighbor number is not enough to handle

all classes of natural images on different semantic levels.

4. CONCLUSIONS

In this work, we have presented an alternative of k-nearest-

neighbor classifier, called �1-nearest-neighbor, to solve the

large scale natural image classification problem. The chal-
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Fig. 3. Classification accuracies with only one neighbor

on different semantic levels. “kNN(k=1)” represents the k-

nearest-neighbor method with k being 1. “L1NN” is the �1-

nearest-neighbor algorithm with λ being 0.1. “L1NN(k=1)”

means that we only calculate the average accuracy of testing

images which have exact one neighbor in L1NN.

lenges of this problem, e.g. the unbalance of samples in dif-

ferent classes and in different semantic levels, make a fixed

number of neighbors not robust enough in k-nearest-neighbor

based classification. The proposed �1-nearest-neighbor clas-

sifier, however, could adaptively determine the number of

neighbors for a testing image, and thus be more robust and

have more discriminative capability for natural image clas-

sification on different semantic levels. Extensive experiment

results on a 1.6 million image database validated the algorith-

mic effectiveness under the large scale scenario.

5. REFERENCES

[1] F. Jing, et al. IGroup: Web Image Search Results Clustering. ACM MM, 2006.

[2] T. Yeh, K. Tollmar, and T. Darrell. Searching the Web with Mobile Images for
Location Recognition. CVPR, 2004.

[3] C. Wang, F. Jing, L. Zhang, and H. -J. Zhang. Scalable Search-Based Image
Annotation of Personal Images. ACM MIR, 2006.

[4] A. Torralba, R. Fergus and W. T. Freeman. Tiny Images. Technical Report,
Computer Science and Artificial Intelligence Lab, MIT, 2007.

[5] C. Wang, L. Zhang, and H. -J. Zhang. Learning to Reduce the Semantic Gap in
Web Image Retrieval and Annotation. ACM SIGIR, 2008.

[6] A. Berg, T. Berg, and J. Malik. Shape matching and object recognition using
low distortion correspondence. CVPR, volume 1, pages 26-30, June 2005.

[7] G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estimation with parameter
sensitive hashing. ICCV, 2003.

[8] S. Belongie, J. Malik, and J. Puzicha. Shape context: A new descriptor for shape
matching and object recognition. NIPS, pages 831-837, 2000.

[9] D. Donoho. For most large underdetermined systems of linear equation the
minimal l1-norm solution is also the sparsest solution. Comm. on Pure and
Applied Math, vol. 59, no. 6, pp. 797-829, 2006.

[10] E. Candès and T. Tao. Near-optimal signal recovery from random projections:
Universal encoding strategies?. IEEE Trans. Information Theory, 2006.

[11] P. Zhao and B. Yu. On model selection consistency of lasso. Journal of Machine
Learning Research, no. 7, pp. 2541-2567, 2006.

[12] R. Tibshirani. Regression shrinkage and selection via the LASSO. Journal of
the Royal Statistical Society B, vol. 58, no. 1, pp. 267-288 1996.

[13] J. Wright, et al. Robust Face Recognition via Sparse Representation. IEEE
Trans. PAMI, 2008.

[14] C. Fellbaum. Wordnet: An Electronic Lexical Database. Bradford Books, 1998.

[15] D. Field. What is the Goal of Sensory Coding? Neural Computation, 1994.

[16] B. Olshausen and D. Field. Sparse Coding with an Overcomplete Basis Set: A
Strategy Employed by V1? Vision Research, 1997.

3712


