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ABSTRACT

This paper describes a particle filter based sound source map-

ping system that builds 2D sound source maps from direc-

tional sound readings taken from a mobile robot. The method

uses a sound source localization model that is represented

by gaussian distribution for both direction and distance. To

do this, accurate directional localization of sound sources is

required, and two key components have been developed to

achieve this: 1) a 32ch low side-lobe microphone array that

is designed by beam forming simulation to have a) an omni-

directional response, b) a narrower main-lobe, and c) lower

side-lobes, in 700-2500[Hz] acoustic signals; 2) directional

localization of different pressure sound sources by combin-

ing the Delay and Sum Beam Forming (DSBF) and the Fre-

quency Band Selection (FBS) methods. Finally, experimental

results show the proposed method can map sound sources in

two dimesionals with high accuracy (less than 50[cm] error).

Index Terms— Array signal processing, sound source

mapping, mobile robots, array design

1. INTRODUCTION

A sound source mapping function is vital for a robot that op-

erates in a human environment. Bearing only Simultaneous

Localization and Mapping (SLAM) technique has been ac-

tively investigated in the last several years, mainly applied

to optical sensors(ex. [1]). However sound signals are sig-

nificantly different in two ways: the audio signal used for

directional localization and the characteristics of the sound

source. Difficulties for directional localization for sound is

caused by acoustic reverberation, diffraction, resonance, in-

terference, and so on. On the other hand, difficulty caused by

the characteristics of the sound source is that the content is

usually unknown and always changing in time or even some-

times missing.

Particle filters are widely used in the perception area in

robotics to handle noisy input to estimate surrounding map

Fig. 1. Flow chart of estimator management for 2D sound

source mapping with mulitple sound sources.

and/or robot location. Several methods have been proposed

using particle filtering to achieve directional localization and

in tracking in microphone centric coordinates (ex. [2, 3]). As

for a mapping function, Nakadai et al.[4] presents a method

to map sound source location using a particle filter from a

microphone array attached both in a room and on a robot,

citing the difficulty in performing sound source mapping from

a robot mounted microphone array, especially when the robot

is moving. In this paper, we propose a method to achieve

2D mapping by using only a microphone array mounted on a

moving robot.

2. 2D SOUND SOURCE MAPPING

Two dimensional sound source position estimation is achieved

by applying a bearing only state estimation technique. Indi-

vidual particle filters are used to maintain position estimates

of a particle sound source, with the set of particles repre-

senting a distribution over the x,y coordinate frame. An

unknown number of sound sources can be present in a given

environmnet, so the number of estimators must be managed,

3689978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



with sound source estimators being created and deleted as

required. Figure 1 shows the flow chart of estimator manage-

ment.

In addition to this, sound sources also emit signals inter-

mittently, so the activity of sound sources over time needs to

be monitored. The estimator monitors activity of a particular

sound source by use of a decay mechanism. Signal detection

causes ‘growth’ of the decay value, while an absence of signal

causes decay. Once a sound source decays to a given value,

the estimator is deleted.

Upon observation of new sound source Obs at time k in

a particular direction θk, a new particle filter estimator FN is

created and initialized from the current robot location with its

particles spread over a 2D Gaussian distribution over the di-

rection estimate θk, at a default distance rD. The variances

associated with the distributions are determined by the error

in the directional sound source estimate σ2
θ , and a default large

variance in distance σ2
r , reflecting the absence of distance in-

formation in the bearing only observation. Each particle is an

estimate as to 2D sound source position si = [x, y].
Initiatization, then occurs as follows

1. Sound source Obs(k) = θk

2. From robot pose PR = [x, y, θ)] initialize particles

S = {s0, . . . , sNP −1}
For all si in S do

• ri = rD + G(σ2
r), α = θk + G(σ2

θ),
where G(σ2) is a function returning a Gaussian

distributed random value with variance σ2

• si = [(xR + ri) cos(α + θR),
(yR + ri) cos(α + θR)]

The filter then propagates particles representing the prob-

ability density function of the sound source location as fol-

lows:

1. Observe sound source Obs(k) = θk from (x, y, θ)R

2. Disperse S, si(k) = si(k−1)+ω, where ω is a random,

Gaussian motion

3. Measure S, such that p(si(k)) = SM(si(k), θk PR)

4. Resample S with replacement, based on p(si(k))

where SM(si(k), θk PR) is a sensor model returning the

probability of observing the sound source at position si(k)
at angle θk from the current robot position. Because of the

dynamic content of sound signals only the direction of the

sound source is used in the sensor model:

SM(si(k), θk PR) = G(θk − exp(si(k), PR), σ2
θ)

where GN (x, σ2) is a normalised Gaussian probability func-

tion for deviance x and variance σ2, and exp(si(k), PR) is the
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Fig. 2. 32ch microphone arrangement (left) and photo (right)

expected angle of observation from robot pose PR to particle

si(k). Note as the robot pose changes due to ego motion, the

expected angle to sound sources will change accordingly.

The dispersal of particles is similar to a ’motion model’

and does allow for some motion of the sound source. How-

ever, in this work we assume static sound sources and the

dispersal of particles is primarily intended to avoid filter con-

vergence on incorrect estimates due to noisy observations.

3. DIRECTIONAL LOCALIZATION

The proposed sound source mapping method can handle noise

in directional localization. However, noise should be stochas-

tically small. Therefore, the directional localization system

needs to be robust from false positive detection. For this pur-

pose, we have been designing and developing a low side-lobe

microphone array that is optimized for the Delay and Sum

Beam Forming (DSBF) directional localisation method.

3.1. 32ch Low Side-lobe Microphone Array

In order to calculate sound source direction for audio input

with an unknown frequency, we developed a microphone ar-

ray and firewire interface board.

The diameter of the microphone array is limited to 33[cm]

due to our mobile robot size. Through simulation of sound

pressure distribution, we empirically decided the microphone

arrangement to minimize side-lobes. Fig.2(left) shows the re-

sulting microphone arrangement which consists of the octag-

onal arrangement of eight 4ch microphone boards that have

an isosceles trapezoid shape. Fig.2(right) shows a picture of

the array. The system has 16bits resolution for a simultaneous

sampling rate of 16kHz.

Fig.3 shows the beam forming simulation results at 1000,

1400, 2000 [Hz]. At each frequency, the focus direction gain

compared to side-lobe is 12[dB] at minimum and 16[dB] in

average (from 700-2500[Hz]).

Fig.4 shows simulated and measured directivity pattern of

this microphone array. The horizontal axis is direction, and

the array is focusing on 0[deg] direction. The vertical axis is

signal gain in [dB] compared to the focused direction.

3690



1000Hz 1400Hz

0 84

8

4

[m]

[dB ]

-5

0

5

-10

-15

2000Hz

0 84

8

4

[m]
0 84

8

4

[m]

[m] [m] [m]
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1000,1400,2000[Hz]

Fig. 4. Simulated (red) and measured (green&blue) directiv-

ity pattern at our office

3.2. Frequency Band Selection Method

The DSBF method has limited performance, especially the

method does not remove other signals perfectly (just reduces).

Thus, we apply the FBS method[5] after DSBF for the detec-

tion of multiple sound sources. FBS is a kind of binary mask

and segregates objective sound sources from mixed sound by

selecting the frequency components judged to be from a com-

mon objective sound source.

The process is as follows. Let Xa(ωj) and Xb(ωj) be the

frequency components of DSBF-enhanced signals for objec-

tive and noise sources, respectively. The selected frequency

component Xas(ωj) is expressed as Equation(1):

Xas(ωj) =
{

Xa(ωj) if |Xa(ωj)| ≥ |Xb(ωj)|
0 else

(1)

This process rejects the attenuated noise signal from the

DSBF-enhanced signal. The segregated waveform is obtained

by the inverse Fourier transform of Xas(ω).
When the frequency components of each signal are inde-

pendent, FBS can separate the desired sound source. This

assumption is usually effective for human voice or every day

sound within a short time period.

Fig.5 shows the FBS procedure for multiple sound sources.

The first step filters out the average signal of each microphone

(no delayed signal) input by FBS and finds the loudest sound

from the spatial spectrum. When the frequency component of

the average signal is higher than any DSBF-enhanced signal
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Fig. 5. FBS sound localization process

from each direction, the system filters out the spectrum of

that frequency. This process rejects omni-directional noise

sounds.

The second step filters out the 1st sound signal by FBS,

and finds the second strongest sound from the spectrum.

When the frequency component of the DSBF-enhanced sig-

nal of the 1st sound’s direction is higher than that of any

other direction, the system filters out the spectrum at each

frequency.

If there are more than two sounds, the system finds the

third strongest sound, and so on, after filtering out the sec-

ond strongest sound signal. The method localizes multiple

sounds from the highest power intensity to the lowest at each

time step. Then the system can continuously localize multiple

sound sources and separate each sound source during move-

ment.

4. EXPERIMENTS

We conducted two experiments using our mobile robot

“Pen2”. A commercial motion capture system (Motion

Analysis Eagle) with 12 cameras measures robot position

in 240[Hz] as a ground truth. Standard deviation of robot

position measured by this MOCAP system is 0.042[mm] in

translation and 1.09e-5[deg] in rotation.

The microphone array locates sound directions at around

12[Hz]. Reverberation time RT20 was 167[msec], and back

ground noise level was 50[dBA] (mainly fan noise). Signal

noise ratio was 20[dBA] for experiment 1, and 15[dBA] for

experiment 2. Sound sources were music, male and female

voices.

Fig.6 shows the results of localising four sound sources.

In this experiment, all the loud speakers are placed on micro-

phone array level. Fig.6(b) shows the convergence of the lo-
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Fig. 6. Experiment 1. a) 2D mapping of four sound sources.

b) Sound source mapping error.

calisation process and the remaining error. After 100 samples

(about 8[s]), the system achieves 2D mapping with around

50[cm] remaining error.

Fig.7 shows an experiment with five sound sources. In

this case, sources are placed in different height (from 57 to

204[cm]). One source at (67, -145, 204)[cm] is not found at

all. It may be placed too high up and only directional local-

ization around yaw axis was conducted. Also the speaker pro-

vides a directional sound source, and the robot passes close to,

and even behind the sound source, increasing the effects of the

high position of the speaker. The remaining four sources are

found. Fig.7(b) shows basically the same kind of convergence

performance as the previous experiment. Interestingly, some

sources are lost and refound as the robot moves throughout

the enviornment. At each time a sound source is found, con-

vergence occurs as like before.

5. CONCLUSION

This paper proposed a 2D sound source mapping method

while robot is in motion, by applying a particle filter tech-

nique. The method is general for any directional localization.

Combined with our 32ch low side-lobe microphone array and

with Delay and Sum Beam Forming (DSBF) + Frequency

Band Selection (FBS) methods, the system can map 2D ar-

rangement of sound sources. Experimental results show after

100 samples, detected sound source locations converge in
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Fig. 7. Experiment 2. a) 2D mapping of five sound sources.

b) Sound source mapping error

less than 50[cm].

Since one sound source that is located high above the ar-

ray height is not mapped well in experiment 2, in the future,

we would like to 1) extend our mapping function into 3D, 2)

optimize microphone array design for two directional local-

ization, 3) develop a more robust and two directional sound

source detection method.
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