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ABSTRACT
This paper addresses sound source separation and speech recognition
for moving sound sources. Real-world applications such as robots
should cope with both moving and stationary sound sources. How-
ever, most studies assume only stationary sound sources. We intro-
duce two key techniques to cope with moving sources, that is, Adap-
tive Step-size control (AS) and Optima Controlled Recursive Average
(OCRA) to improve blind source separation. We implemented a real-
time robot audition system with these techniques for our humanoid
robot ASIMO with an 8ch microphone array by using HARK which
is our open-source software for robot audition. The performance of
the system will be shown through sound source separation for mov-
ing sources and automatic speech recognition of separated speeches.

Index Terms— robot audition, sound source separation, speech
recognition, adaptive step-size control, optima controlled recursive
average, moving sound sources

1. INTRODUCTION

“Robot Audition” is important for natural human-robot interaction
[1]. A robot should recognize users’ voices without using any ad-
ditional equipment such as a headset or microphone attached to the
users. Actually, various robot audition systems have been reported
[2, 3, 4]. However, in the real world, environmental factors such as
source positions, background noises and room reverberations change
dynamically. Since most parameters in their robot audition systems
were tuned to a static environment, it is still difficult to recognize a
user’s voice in a dynamically-changing environment. To solve this
problem, the parameters should be automatically adapted to the envi-
ronment, because optimal values of the parameters are dynamically
changing. We reported an adaptive step-size (AS) control method[5]
for general Blind Source Separation (BSS) methods to achieve au-
tomatic adaptation of optimal parameters, and showed its effective-
ness in a simulated environment. This paper proposes an optima
controlled recursive average (OCRA) method as another effective
method to cope with dynamically-changing environments. In addi-
tion, we applied these two methods to a real-time frequency-domain
BSS method, online Geometric Source Separation (online GSS) [6]
We, then, show its effectiveness through sound source separation
experiments for moving sources by using a real robot called Honda
ASIMO which was modified to have an 8ch microphone array in its
head.

2. FORMULATION OF ONLINE GEOMETRIC SOURCE
SEPARATION AND ITS ISSUES

Online GSS [6] is promising as one of the adaptive FD-BSS algo-
rithms for robot audition, because it requires a smaller calculation

cost than the other BSS algorithms. We, thus, focused on online
GSS. Suppose that there are M sources and N ( ≥ M) microphones.
A spectrum vector of M sources at frequency ω, s(ω), is denoted
as [s1(ω) s2(ω) ... sM (ω)]T , and a spectrum vector of signals cap-
tured by the N microphones at frequency ω, x(ω), is denoted as
[x1(ω) x2(ω) ... xN (ω)]T . The source separation is then formu-
lated as

y(ω) = W(ω)x(ω), (1)

where W(ω) is called a separation matrix. The separation with the
general FD-BSS is defined as finding W(ω) which satisfies the con-
dition that output signal y(ω) is the same as s(ω). In order to esti-
mate W(ω), GSS introduces two cost functions, that is, separation
sharpness (JSS) and geometric constraints (JGC ) defined by

JSS(W) = ‖E[ESS ]‖2
(2)

ESS = yyH − diag[yyH ],

JGC(W) = ‖EGC‖2
(3)

EGC = diag[WD − I],

where ‖ · ‖2 indicates the Frobenius norm, diag[·] is the diagonal
operator, E[·] represents the expectation operator and H represents
the conjugate transpose operator. D means a transfer function ma-
trix based on a direct sound path between a sound source and each
microphone. The total cost function J(W) is represented as

J(W) = αSJSS(W) + JGC(W), (4)

where αS means the weight parameter that controls the weight be-
tween the separation cost and the cost of the geometric constraint.
This parameter is usually set to ‖xHx‖−2 according to [6].

In addition, the online GSS updates W by minimizing J(W)
so that the optimal separation matrix Wopt can be obtained by using

Wt+1 = Wt − μJ′(Wt). (5)

where Wt denotes W at the current time step t, J′(W) is defined
as an update direction of W, and μ means a step-size parameter.
J′(W) is derived from its complex gradient [8].

J′(W) = αSJ′
SS(W) + J′

GC(W) (6)

J′
SS(W) = 2ESSWxxH

J′
GC(W) = EGCDH .

However, the online GSS has two issues in a dynamically-
changing environment. One is that the step-size parameter μ and
the weight parameter αS are fixed values decided heuristically or
empirically, although they should be frequency-dependent and time-
variant values according to environmental changes. The other is the
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Fig. 1. Diagram of GSS with the proposed methods

calculation error of J′
SS(W) in Eq. (6). The online GSS omitted

the expectation operation and just used an instantaneous product for
incremental processing. This disturbs the convergence of W, and
W perturbs around the optimal value Wopt. For the first issue,
we already reported an Adaptive Step-size (AS) method [5] which
controls both μ and αS optimally, and showed its effectiveness
in simulated environments. For the second issue, we propose a
new method called Optima Controlled Recursive Average (OCRA)
which makes the convergence of the separation matrix smoother,
and improves the separation performance of stationary states.

2.1. Adaptive step-size control

AS is well-studied in the field of echo cancellation [7]. We ex-
tended AS to support multi-channel input and complex number sig-
nals for FD-BSS by using the multi-dimensional version of Newton’s
method and linear approximation formula for a complex gradient
matrix[5]. By using our AS, Eqs. (5) and (6) are redefined as

Wt+1 = Wt − μSSJ′
SS(Wt) − μGCJ′

GC(Wt), (7)

μSS = ‖ESS‖2/(2‖2EWtxxH‖2),

μGC = ‖EGC‖2/(2‖2EGCDH‖2).

where μSS and μGCq correspond to μαS and μ, respectively. They
become large values when a separation error is high, for example,
due to source position changes. It will be low when the error is small
due to the convergence of the separation matrix. Thus, step-size and
weight paramters are controlled optimally at the same time.

3. OPTIMA CONTROLLED RECURSIVE AVERAGE

OCRA estimates a precise correlation matrix by using an adaptively
controlled window. In online systems, correlation matrix Rxx at

time frame t is estimated as R̂xx(t) from a partial signal of x(t) by
using a time window w(·).

R̂xx(t) = w(t) ∗ [x(t)xH(t)]

=
∞X

τ=0

w(τ)[x(t − τ)xH(t − τ)]. (8)

Since rectangular and exponential windows are commonly used, we
discuss their estimation errors, wRct(τ) and wExp(τ) defined as

wRct(τ) =

j
1/N 0 ≤ τ < N
0 otherwise.

(9)

wExp(τ) =

j
(1 − α)α−τ 0 ≤ τ
0 otherwise,

(10)

where N is a rectangular window of length, and α is the decay pa-
rameter, which decides the equivalent window length. We use the
root mean squared error ēij defined as

ēij =
q

E[|w(t) ∗ [xi(t)x∗
j (t)] − E[xi(t)x∗

j (t)]|2]. (11)

By assuming that xi(t) is a linear combination of Gaussian com-
plex variables, errors for the rectangular window ēij,Rct and for the
exponential window, ēij,Exp are calculated as

ēij,Rct = 1/
√

N, (12)

ēij,Exp =
p

(1 − α)/(1 + α). (13)

These equations imply that for reducing estimation errors, a long
window length is required. For better estimations, the window length
must be long, however, it makes the adaptation speed slow. There-
fore, it is necessary to set the optimal length for required preci-
sion. Because the required precision is proportional to the separation
sharpness, we propose an optimal control method for window length
defined by

N(t) = (β · min[ESS(t)])−2 , (14)

where N(t) is the window length for the rectangular window, β is an
allowable error parameter, and min[A] represents the minimum el-
ement’s value in matrix A. To avoid an extraordinary long window,
we introduced the maximum value of N(t), Nmax shown in Fig. 1,
and it is set to 1,000. For β, we empirically used 0.99. The decay
parameter α for the exponential window which is equivalent to the
rectangular length N(t) is defined as

α(t) = (N(t) − 1)/(N(t) + 1). (15)

Finally, the correlation matrix is recursively estimated by using
OCRA with the exponential window defined by

R̂xx(t) = αR̂xx(t − 1) + (1 − α)xxH . (16)
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Fig. 2. HARK-based real-time robot audition system using the proposed GSS
module (shown as “ExecuteGSS ASOCRA” in the center)

Fig. 3. An 8 ch microphone array embedded in ASIMO’s head.
The microphones are circularly layouted on the head. Each mi-
crophone is omni-directional.

4. IMPLEMENTATION

4.1. GSS improved by AS and OCRA

Fig. 1 shows a diagram of GSS introducing our proposed method,
that is, AS and OCRA, and its initialization and main processes.
The step-size and weight parameters are adaptively controlled as
μSS and μGC with AS. Our GSS uses correlation matrices Rxx and
Ryy estimated by OCRA instead of using the corresponding instan-
taneous products.

4.2. Real-time robot audition system

We implemented GSS depicted in Fig. 1 as a new module of HARK
(Honda Research Institute Japan Audition for Robots with Kyoto
University) which is our open source software for robot audition1[9].
HARK consists of a complete set of modules for robot audition2 as
component blocks on FlowDesigner[10]3, which works on Linux in
real time. Many multi-channel sound cards are supported to build
a real-time robot audition system easily. For preprocessing, sound
source localization, tracking and separation are available. These pre-
processing modules are able to be integrated with automatic speech
recognition (ASR) based on the missing feature theory (MFT). For
MFT, modules such as acoustic feature extraction for ASR, au-
tomatic missing feature mask generation, and ASR interface are
prepared. Missing-feature-theory based ASR (MFT-ASR) is pro-
vided as a patch for Julius/Julian[11] which are Japanese/English
open source speech recognition systems. Only MFT-ASR is imple-
mented as a non-FlowDesigner module in HARK, but it connects
with FlowDesigner by using modules from the ASR interface. Users
are able to flexibly build robot audition systems by using the GUI
interface. Fig. 2 shows our robot audition system using a newly-
developed module for GSS with AS and OCRA.

5. EVALUATION

We evaluated our proposed GSS in terms of two points:

1“HARK” has a meaning of “listen” in old English. Available at
http://winnie.kuis.kyoto-u.ac.jp/HARK/.

2The latest HARK-0.1.7 includes 30 modules.
3http://flowdesigner.sourceforge.net/

Ex.1 performance of our proposed GSS,
Ex.2 performance of our robot audition system with the proposed

GSS.

In Ex.1, sound source separation of a mixture of two white noise
sources was performed. One sound source was located in front of a
robot. The other was a kind of moving sound source, that is, its
direction alternately switched between 90◦ and 90◦ + Δd. Δd was
one of 5◦, 30◦, 45◦, 60◦, or 90◦. The timing of the direction switches
was set to be one of 0.125, 0.25, 0.5, 1, 2, or 4 seconds. The distance
between robot and each sound source was 1 m. The input sound was
synthesized by using measured impulse responses between a sound
source and a microphone array which is embedded in Honda ASIMO
shown in Fig. 3. The directions for sound sources were given to GSS.
The performance of online GSS (GSS), GSS with AS (GSSAS), and
GSS with AS and OCRA (GSSASO) were compared. For a metric
for separation, we used the mean of correlation coefficients (CC)
defined in time-frequency domain as

CC [dB] = 10 log10 Eω[CCω(ω)], (17)

CCω(ω) =
|Et[|y∗

1(ω, t)y2(ω, t)|]p
Et[|y1(ω, t)|2] · p

Et[|y2(ω, t)|2] ,

where Eω[·] and Et[·] are the average powers in frequency and time,
respectively. yi(ω, t) shows the i-th output signal at time t and fre-
quency ω. Because CC represents the correlation between the two
sound sources, it is expected to be −∞ dB when the two sources are
separated completely.

In Ex.2, isolated word recognition for a stationary speech
source, a moving speech source and a mixture of stationary and
moving speech sources was performed. The stationary speaker
stands at 60◦ left to ASIMO in a 4.0 m × 7.0 m room with 0.3–0.4 s
of RT20. The moving speaker moved around ASIMO from 0◦ to
-90◦. We asked two persons to utter 236 isolated words included
in ASIMO’s word database, that is, real speech data. In this case,
GSS worked as a module in our robot audition system, and speaker
directions estimated by a MUSIC-based sound localization module
were sent to the GSS module. An acoustic model for MFT-ASR
was trained with the Japanese Newspaper Article Sentences (JNAS)
corpus. For a metric, we used a word correct rate.

In both experiments, the sampling rate was 16 kHz. The window
length and shift length for GSS were 32 ms and 16 ms, respectively.
The Hanning window was used as the window function.
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Table 1. Result of Ex.2 – word correct rate of isolated word recog-
nition (%)

GSS GSSAS GSSASO

single stationary 95.8 95.8 95.8
moving 90.7 90.5 90.5

double stationary 58.3 72.3 73.1
(simultaneous) moving 60.2 72.9 74.4

Fig. 4 shows results of Ex.1. Fig. 4a) shows the change of CC
for switching speed. Obviously, GSSAS and GSSASO outperform
online GSS, and GSSASO has the best performance. The switch-
ing speed does not affect the performance of these three methods.
Fig. 4b) shows the change of CC for switching intervals. In this
case, also GSSASO has the best performance. However, as the inter-
val is larger, the performance drops. Fig. 4c) shows the maximum,
minimum and average values of μGC and μSS for GSSASO in Ex.1.
The average values show that the optimal value varies according to
frequency. The average lines for μGC and μSS have similar fre-
quency characteristics. This reflects the frequency characteristics of
the impulse response used for data synthesis. From minimum and
maximum values, we found that μGC changed from 10−1 to 101

compared with the average value, and μSS changed from 10−2 to
102. This shows that a fixed step-size parameter is of less use for
these kinds of dynamic changing situations.

Tab. 1 shows the speech recognition results in Ex.2. For both
stationary and moving single speech sources, the three methods have
the same performance in speech recognition. This shows that even
online GSS has the capability to deal with a moving source in less
noisy cases, because W converged fast enough. However, in noisy
cases where simultaneous speeches occur, online GSS is of less use.
GSSAS and GSSASO, thus, have better performance. Recognition
of the separated speech for the stationary source also improved. We
guess that this is caused by the leakage from the moving source, that
is, a dynamically-changing noise. GSSAS and GSSASO were able
to deal with such a noise, while online GSS was not. The effect
of OCRA was small in Ex.2. This means that the improvement in
source separation by OCRA affects ASR performance less. How-
ever, it may be more effective in another situation. We will, thus,
conduct further experiments such as robot’s moving cases.

6. CONCLUSION

We proposed optima controlled recursive average which is applica-
ble for general blind source separation to cope with dynamically-

changing environments. It is applied to GSS with previously-
proposed adaptive step-size control which also improves the sep-
aration performance in dynamically-changing environments. In
addition, we developed a real-time robot audition system with the
proposed GSS. Our experiments for the GSS module and the robot
audition system showed that the combination of these two methods
improved sound source separation and speech recognition. Our
future work includes more detailed evaluation such as sentences,
crossing speakers and situations with moving robots.
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