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ABSTRACT

In this paper, we propose a new ICA-based BSS algorithm including
estimation of sources’ probability density functions (PDFs) to adapt
the nonlinear activation function to various noise conditions. In the
proposed method, closed-form second-order ICA is introduced as a
computational-cost-efficient preprocessing to extract sources’ PDFs,
which is beneficial for real-time application. Compared with various
type of conventional ICAs, e.g., fixed activation-function type and
ML-based type, our proposed algorithm can give a faster and higher
convergence. Based on the proposed source-adaptive ICA, we show
a real-time noise reduction results under diffuse noise environment.
Also we can demonstrate our recently developed hands-free robot
spoken dialogue system via real-time ICA.

Index Terms— Separation, speech enhancement, acoustic sig-
nal processing, adaptive signal processing, robot

1. INTRODUCTION

Blind source separation (BSS) is the approach taken to estimate orig-
inal source signals using only information of the mixed signals ob-
served in each input channel. This technique is based on unsuper-
vised filtering in that the source-separation procedure requires no
training sequences and no a priori information on the directions-of-
arrival (DOAs) of the sound sources. Owing to the attractive features
of BSS, much attention has been paid to the BSS technique in many
fields of signal processing. One promising example in acoustic sig-
nal processing is a humanoid robot auditory system [1], which con-
structs an indispensable basis for intelligent robot technology [2].

In this paper, we propose a new independent component analy-
sis [3] (ICA)-based BSS algorithm including estimation of sources’
probability density functions (PDFs) to adapt the nonlinear acti-
vate function to various noise conditions. Our previously proposed
closed-form second-order ICA (SO-ICA) [4] is introduced as a
computational-cost-efficient preprocessing to extract sources’ PDFs.
This feature is beneficial for real-time implementation of BSS. Com-
pared with various type of conventional ICAs, e.g., fixed activation-
function type [5, 6] and maximum likelihood (ML)-based type [7],
our proposed algorithm can give a faster and higher convergence.
Based on the proposed source-adaptive ICA, we show a real-time
noise reduction results under realistic diffuse noise environment.
Also we can demonstrate our recently developed hands-free robot
spoken dialogue system [10] for a railway-station guidance task via
real-time ICA.

This work was partly supported by the NEDO project for strategic de-
velopment of advance robotics elemental technologies, and MIC Strategic
Information and Communications R&D Promotion Programme in Japan.
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2. MIXING PROCESS AND CONVENTIONAL METHODS

2.1. Mixing process

In this study, the number of microphones is K and the number of
multiple sound sources is L, where we deal with the case of K > L.

Multiple mixed signals are observed at the microphone array,
and these signals are converted into discrete-time series via an A/D
converter. By applying the short-time discrete-time Fourier trans-
form framewisely, we can express the observed signals, in which
multiple source signals are linearly mixed, as follows in the time-
frequency domain:

x(f,1) = A(N)s(f. 1), (M

where f and ¢ represent frequency bin number and time index, re-
spectively, x(f,t) = [xi(f,?), -+ ,xx(f,?)]" is the observed signal
vector, and s(f, 1) = [s1(f, 1), -+ ,s.(f,£)]" is the source signal vec-
tor. Also, A(f) is the mixing matrix which is complex-valued be-
cause we introduce a model to deal with the relative time delays
among the microphones and room reverberations.

2.2. ICA-based BSS

Next, we perform signal separation using the complex-valued un-
mixing matrix W(f), so that the L time-series output y(f,?) =
Dr(fs0), -, yi(f, ©)]" becomes mutually independent; this proce-
dure can be given as

v, 0 = WHx(f,n. 2

We perform this procedure with respect to all frequency bins.

Various ICA methods for optimizing W(f) have been proposed.
In the conventional frequency-domain higher-order ICA (HO-ICA)
[5, 6, 8], the optimal Wyo(f) is obtained by the following iterative
equation:

W) = u [T (@ 0 (10) |- WD + Wia (. (3)

where X! denotes hermitian transpose of matrix X, u is the step-size
parameter, / is an identity matrix, [m] is used to express the value of
the m-th step in the iteration, (-), denotes a time-averaging operator.

Here ® (Y(f,t)) is the appropriate nonlinear vector function,
a.k.a. activation function. Basically this function’s element corre-
sponding to each source s;(f, ¢) should be determined as

0
D)) = “ D) log(py,) ©)

where p;, is PDF of the source s;(f, 7). Thus, generally speaking in
HO-ICA, we need to determine the activation function in advance, or
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Fig. 1. Block diagram of BSSA.

estimate it via ML scheme [7]. However, we could not know a priori
information of sources” PDFs in a BSS context. Also ML-based ac-
tivation function estimation requires additional huge computations
because this method should iteratively update the activation function
form along with ICA’s iterations; this results in a great drawback for
real-time application. Hence typical use of ICA simply substitutes
the activation function with fixed function, e.g., tanh(-) for speech
signal [6, 8]. This leads to a notable mismatch and bad convergence
especially when we are confronted with more general acoustic sig-
nals like non-speech noises.

2.3. Blind spatial subtraction array [9]

In a hands-free system at a real environment, it is required to ex-
tract a target speech and reduce noises which cannot be regarded
as point sources. Although the conventional ICA-based BSS could
work especially in point sources mixing, it is difficult to apply ICA
to non-point source noise reduction. BSSA has been proposed to
extract a target speech in such a case. In BSSA, ICA is partly uti-
lized as a noise estimator because of the fact that ICA is proficient
in noise estimation rather than target estimation [9]. BSSA consists
of two paths; a delay-and-sum (DS) array based primary path as tar-
get speech enhancing part, and ICA-based reference path as noise
estimation part (see Fig. 1; FD-ICA is frequency-domain HO-ICA
and PB means projection back operation using W(f)™'). Based on
the spectral subtraction method, the BSSA’s output Ygssa(f,?) can
be given by

o=

{IYos(£ 0P =y - 12(f. 0P
(f [Yos(f. OF = y-I1Z(f. ) 2 0), ®)
6 - |Yps(f,?) (otherwise),

Yessa(fo1) =

where Yps(f,?) is the output signal from the primary path, Z(f,¢)
is the output signal from the reference path, y represents over-
subtraction parameter, and & denotes the flooring parameter.

3. PROPOSED METHOD
3.1. Motivation

In a previous study, closed-form solution of SO-ICA was proposed
by one of the authors [4], who showed that simple algebraic calcu-
lations enable the separation of mixed signals without iterative filter
updating. This finding has motivated us to combine closed-form SO-
ICA and source’s PDF estimation with few computational costs.
Our algorithm consists of three stages, namely, closed-form SO-
ICA for roughly separating the sources, kurtosis-based activation
function estimation applied to the roughly separated signals, and
post-HO-ICA with the optimized activation function for increase of
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the separation accuracy. This strategy is very reasonable because ad-
vance SO-ICA can separate the sources to some extent regardless of
the sources” PDF (there is no activation function in SO-ICA), and
then we can identify PDFs after SO-ICA. Hereinafter we describe
the detailed algorithm.

3.2. First stage: closed-form SO-ICA

This subsection briefly describes the overview of signal processing
in the closed-form SO-ICA (see Ref. [4] for more details). First, we
obtain the correlation matrices with different time points as

R, () = (x(fi0x(f, t)H detrs (6)

where (-),, denotes the time-averaging operator over specific time
duration #;, and i = 1,2, ... represent indices of time-averaging block.

Next, we apply the singular value decomposition (SVD) to a
superposition of R, (f), which is represented as

DR = UHdiag(, b, U, (7)

where A, are the eigenvalues, diag(Ay, ...) denotes the diagonal ma-
trix which includes the eigenvalues, and U(f) is the matrix consist-
ing of the eigenvectors. Then we obtain a full-rank decomposition
for pseudo-inverse of }}; R, (f) as follows

[ R0]

L(f) U(f)diag(1/ VA 1/, ). (9)

It can be proved [4] that if the covariance of the sources s(f, ?)
in ¢ is negligible, every L(f)" R, (f)L(f) for any i shares the same
eigenvectors, and this is given via SVD form as

LN R, (NL() = T(fHdiag(o (1), o2(t), . )TN (10)

where o (t;) are the eigenvalues for a specific time block #;, and T(f)
denotes the matrix consisting of shared eigenvectors which are inde-
pendent of time-block index i. Therefore, for any 7, the simultaneous
diagonalization of R, (f) can be achieved as follows;

T(N' LN R (NLNT(S) = diag(o1 (1), o2(1), ), (11)

and this means that the optimal separation filter matrix in the 2nd-
order sense is given by

Wso() = LNTO)" (12)

Note that, for the calculation of 7(f) in (10), it is sufficient for us
to only apply a single SVD to an arbitrary single time-block #; be-
cause of the eigenvector-sharing property. So the total calculation
of closed-form SO-ICA is quite few, almost the same as that of one
iteration in HO-ICA.

LHLN", ®)

3.3. Second stage: kurtosis-based activation function estimation

After closed-form SO-ICA, the roughly separated sources can be ob-
tained. Therefor, we can estimate PDFs of sources via the following
generalized Gaussian distribution (GGD) [11] modeling and its kur-
tosis. This result of PDF estimation will be utilized for HO-ICA in
the next stage (3rd stage). Hereafter y(f) means a real part of the
separated signal.

GGD is a flexible family of PDF modeling with some variable
parameters, and GGD can represent various types of well-known



PDFs, e.g., Gaussian and Laplacian distributions. The definition of

GGD is as follows:
=Rl
A exp(—[lz Z'] ) (13)
ZQF(l) a

B

f&;G(Z; a’ﬁ) =

where z is the mean of variable z, I'(x) = fooo exp(-=H)t*1dt is a
gamma function, « is scale parameter, and 8 is shape parameter
of GGD. Figure 2 shows examples of different PDFs in GGD; note
that 8 = 2 corresponds to Gaussian PDF and that 8 = 1 corresponds
to Laplacian PDF.

If source’s PDF obeys GGD, we can easily derive the appropri-
ate activation function as

%LZVH,] (z>0),
—G7|Z|ﬂ_ , (z2<0).

(14)

0
D(fo6(z; . B)) = e log(fo6(z; @, B)) = {

Figure 3 depicts examples of activation functions for GGD.

The estimation of the shape parameter 8 is the most important
issue here because 8 dominantly determine the activation function
(see (14)) but the scale parameter @ becomes negligible through scale
normalization. We can introduce kurtosis to estimate 8. In general
kurtosis of signal y(¢) is given by

kurt(p(0)) = (OO0 - 3. (15)

The n-th order moment of GGD has the following useful relation-
ship;

-1
corE
From (15) and (16) we have
5\ (1).(3\"
kuﬁ@(t)):F(E)F(B)F(B) -3. 17)

This is a monotonically decreasing function of 8. Thus, we can es-
timate the shape parameter 8 by measuring kurtosis and using an
inverse relationship of (17) in table-lookup manner.

In summary, we measure kurtosis of each of separated signals by
closed-form SO-ICA, and then we can adaptively determine the cor-
responding activation function by (14) for each sound source. The
required computations is only one kurtosis calculation just after SO-
ICA, and consequently our method is computative efficient in com-
parison to ML-based activation function estimation. Possible draw-
back of the proposed method is PDF estimation error due to poor
separation accuracy in SO-ICA. Thus, PDF estimation performance
is highly related to degree of ease in source separation, e.g., rever-
berant conditions.

3.4. Third stage: nonclosed-form HO-ICA

The separation filter matrix Wso(f) obtained by SO-ICA often pro-
vides insufficient source-separation performance. To polish up the
separation filter matrix and gain the further performance, we propose
to combine the nonclosed-form HO-ICA after closed-form SO-ICA
employing the source-PDF adapted activation function. This strat-
egy regards the separation filter matrix Wso(f) as an initial value for
HO-ICAs iterative learning given by (3).

In general, HO-ICA suffers from an problem of the poor and
slow convergence of nonlinear optimization. In the proposed
method, however, preceding closed-form SO-ICA can give a better
initial state for HO-ICA, and the previous PDF estimation enables
HO-ICA to use more appropriate activation function. This combina-
tion mitigates the drawbacks on the poor convergence.
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Fig. 3. Activation function for GGD with typical shape parameter 3.

4. EXPERIMENTAL EVALUATION FOR ALGORITHM

To evaluate the efficacy of the proposed method, we carried out noise
reduction experiments in a real reverberant room where two omni-
directional microphones are set. The reverberation time (RT) in this
room is 200 ms. Target speech signal is arriving from a fixed direc-
tion, and spoken by two male and two female speakers. As for the
noise, a diffuse noise recorded in an actual railway station is emitted
from surrounded 36 loudspeakers. Noise reduction rate (NRR) [8],
defined as the output signal-to-noise ratio (SNR) in dB minus the
input SNR in dB, is used as the objective indication of separation
performance.

Figure 4 shows the convergence curves of NRR for noise estima-
tion part in BSSA (batch processing for 3-second data). We compare
simple ICA (activation function is fixed to tanh(-)), ICA with ML-
based activation function estimation, and the proposed method. The
horizontal axis represents the total computational cost which is al-
most equal to the number of iterations in the HO-ICA part multiplied
by the number of frequency bins, including additional computations
to estimate the activation function. From the results, we can see that
the proposed method has a fast and high convergence performance.

Figure 5 depicts the resultant NRR of speech extraction in BSSA
output, where this BSSA is implemented to be in real-time [10]. To
simulate the realistic spoken dialogue system, we made a test input
consisting of noise only periods (0-35 s and 55-100 s) and noise-
speech mixing parts (3555 s; speech DOA is —20°, and 100-120 s;
speech DOA is 20°). We confirm the proposed method’s great effi-
cacy still in real-time operation.

5. HANDS-FREE ROBOT SPOKEN DIALOGUE SYSTEM

Recently we develop a hands-free robot spoken dialogue system us-
ing the proposed real-time BSSA, which is mainly used for railway-
station guidance in a noisy environment (see Fig. 6).

To evaluate the system, speech recognition test was conducted
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in the reverberant room where RT is more than 400 ms. The tar-
get speech is talked in front of a microphone array and 1.5 m apart.
We use 5 speakers (250 words) as the target utterances. As for
noise, two noises were added simultaneously. First noise is a diffuse
noise recorded in an actual railway station emitted from surrounded
8 loudspeakers (it simulates railway-station noise). Second noise is
an interference speech located at 50 degrees in the right direction of
the microphone array, and its distance is 2.0 m. An eight-element
array with the interelement spacing of 2 cm is used.

Figure 7 gives a comparative assessment example from the view-
point of preprocessing microphone array methods, i.e., the conven-
tional DS, ICA, or the proposed BSSA. The results reveal that both
the word correct and word accuracy of the proposed BSSA are ob-
viously superior to those of the conventional DS and ICA, and our
proposed system notably sustains the recognition accuracy of more
than 80%. The demonstration movie of the robot dialogue system is
available in the following URL. Readers can confirm that the fluent
conversation.

Demo video: http://spalab.naist.jp/database/Demo/rtbssa/

6. CONCLUSION

In this paper, first, we proposed a new efficient BSS algorithm
combining closed-form SO-ICA and source-PDF adaptive HO-ICA,
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where the activation function in HO-ICA is optimized by using
information from closed-form ICA. This enables us to improve the
separation accuracy with saving the computational costs. Secondly
we demonstrate our recently developed hands-free robot spoken
dialogue system, and show that the proposed system can work under
an advarse condition like railway station environments.
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