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ABSTRACT
This paper describes a new method that allows “Barge-In” in various
environments for robot audition. “Barge-in” means that a user begins
to speak simultaneously while a robot is speaking. To achieve the
function, we must deal with problems on blind dereverberation and
echo cancellation at the same time. We adopt Independent Compo-
nent Analysis (ICA) because it essentially provides a natural frame-
work for these two problems. To deal with reverberation, we ap-
ply a Multiple Input/Output INverse-filtering Theorem-based model
of observation to the frequency domain ICA. The main problem is
its high-computational cost of ICA. We reduce the computational
complexity to the linear order of reverberation time by using two
techniques: 1) a separation model based on observed signal inde-
pendence, and 2) enforced spatial sphering for preprocessing. The
experimental results revealed that our method improved word cor-
rectness of reverberant speech by 10-20 points.

Index Terms— Barge-In, ICA, MINT, blind dereverberation,
echo cancellation

1. INTRODUCTION

A robot should recognize an user’s speech from a mixture of sounds
with the least prior information, because the robot has to work in
unknown and/or dynamical environments. A mixture of sounds may
includes the robot’s own speech and user’s speech reverberations,
because microphones are equipped on its body, not attached close
to the mouth of a user. Therefore, these should be suppressed to
enhance the user’s speech (Fig. 1). In human-robot or in human-
computer interaction, the user often interrupts and begins to speak
while the robot or the system is speaking. This situation is called
“barge-in”. Robot audition systems should be “barge-in-able” for
smoother speech interaction.

To achieve such a barge-in-able system, we must deal with the
problems of echo cancellation (separation of robot’s speech) and
blind dereverberation (separation of user’s speech reverberation)
at the same time. We must especially focus on late-reverberation
(late-reflection) because early-reverberation can be solved by cep-
stral mean normalization (CMN) or noise robust methods for au-
tomatic speech recognition (ASR). Nakatani et al. proposed a
high-performance method of blind dereverberation based on Short-
Time Fourier Transformation (STFT) representation [1]. Gomez et
al. applied fast spectral subtraction for late reverberation by using
a pre-recorded impulse response [2]. However, these and other fa-
miliar methods have not dealt with the echo-cancellation problem,
or used a priori knowledge about the environment, such as room
impulse response. This is similar to echo cancellation. Yang et
al. recently proposed a noise-robust (user’s speech-robust) method
based on Independent Component Analysis (ICA) [3], and Miyabe
et al. realizes a separation of the known and unknown sources effi-
ciently with ICA framework [4]. However, these method also cannot
deal with the target speech reverberation.
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Fig. 1. Data flow and our problem

We focused on frequency domain ICA (FD-ICA) to deal with
the two problems because 1) it provides a natural framework, such as
blind source separation and adaptive filtering, 2) it is robust against
Gaussian noise, such as fan noise, and 3) its convergence and com-
putational cost are excellent compared with time domain ICA. How-
ever, Araki et al. reported a fundamental limitation of the perfor-
mance of FD-ICA [5]. To overcome the limitation and deal with
late-reverberation, we combined a Multiple Input/Output INverse-
filtering Theorem (MINT)-based model of observation [6] and STFT
representation [1] for FD-ICA. However, this naive application seri-
ously increases the computational cost because this approach essen-
tially separates all reflected sounds as other sources.

In this paper, we introduce two techniques to reduce the com-
putational cost: 1) a separation model by assuming observed signal
independence, and 2) enforced spatial sphering for preprocessing. In
Section 2, we explain the MINT-based observation model, ICA and
its problems. In Section 3, we explain the two techniques in detail
and discuss our evaluations of the new method assessed by evalua-
tion results obtained by speech recognition experiments.

2. CONVENTIONAL TECHNIQUES

We describe total models with STFT representation [1], which is a
form of multi-rate processing because of a) its scalability with other
methods and b) its low computational cost. We denote the spectrum
after STFT as ���� �� at frequency � and frame �. For the sake of
readability, we skip denoting the frequency index, �.

2.1. MINT-based observation model

Already mentioned in Section 1, MINT [6] confirms the existence of
an inverse filter for the acoustic field if the number of microphones
is larger than the number of sound sources.

We denote the observed spectra at microphones �� � � � � � as
������ � � � � ����� (� is the number of microphones). Then, we rep-
resent the observed vectors, ����, ����, and the user’s and robot’s
(known) speech spectrum ����� and ����� as:

���� � ������� ������ � � � � ������
�
� (1)

���� � ������������� � � � ��������� � (2)
����� � ������� �������� � � � � �����	���

�
� (3)

����� � ������� �������� � � � � �����	���
�
� (4)
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where � ,�� and�� mean the number of the delayed frames, and
their proper sizes are decided by the following MINT condition.

We define the circulant ”MINT transfer function matrix”�� for
source signal � with environment-dependent parameter�� as:

����� � ���� ���� �
�
� � � � � � �

�
�����

�
� (5)
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With the MINT transfer function matrices �� and �� of the
user’s and robot’s speech, the observation model is represented as�

��	�
���	�

�
�

�
�� ��

� �

��
���	�
���	�

�
� (7)

where � denotes a ������� ������ unit matrix, and the size of
�� is 
������ ������ and that of�� is 
������ ������.
Here, if the MINT condition where 
����� � ������ is satisfied,
the whole mixing matrix becomes a holomorphic square matrix, i.e.,
its inverse system exists.

2.2. Independent Component Analysis

ICA for MINT-based separation model: Assuming that the source
signals �� and �� are independent, respectively, this problem can
be solved by instantaneous-model ICA [7]. With the separation ma-
trices� � and� �, the separation model is represented as�

����	�
���	�

�
�
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� � � �

� �

��
��	�
���	�

�
� (8)

ICA estimates the separation matrices�� and� � and the user’s
speech �� blindly at each frequency � by minimizing Kullback-
Leibler Divergence (KLD),

��� ��� �� �

	
������� 	
�

�������

������������
������� (9)

where  is the joint Probability Density Function (PDF) of �� and
��. �� and �� correspond to the products of the marginal PDF of
�� and ��. Usually, these parameters are estimated by the iterative
gradient-based method because of the non-linearity of � .
Sphering for Pre-processing: To achieve fast-convergence of ICA,
sphering transformation works well as pre-processing [7]. This is a
linear transformation, � , which decorrelates the input signals and
normalizes the variances. With the eigenvalue diagonal matrix, �,
and the eigenvector unitary matrix � of the temporal-spatial corre-
lation matrix,	, the transformation is usually done as,
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where E��� is a time-averaging operator, and 
� denotes the trans-
formed observed signal. The size of correlation matrix	 is �
���
�� �������. 
� and 
� are used as the input of ICA instead of
�� and ��.

2.3. Problems with MINT-based separation model for ICA

1. Computational Cost: The calculation cost of the ICA is
��
����, and that of the sphering is ��
����. We need to
reduce the computational cost to the linear order of the reverberation
time,� , for practical use.
2. Permutation: ICA has ambiguity in permutation and scaling
of the output signal, ���. Because we applied ICA in the frequency
domain, they have to be solved to re-syntheize the signal in the time
domain. Hence, we must select the direct sound from ���.
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Fig. 2. Signal flow in our method for MINT-based model

3. EFFICIENT ICA-BASED SEPARATIONMETHOD

We explain the two techniques for the reduction of the computational
cost of ICA in this section. As a result, the computational cost was
reduced to ��
�� in the sphering, and ��
��� in the ICA, i.e., it
became the linear order of � . An overview of our method is illus-
trated in Fig. 2

3.1. Separation model based on observed signal independence

We designed the following separation model to extract the direct
sound frame of the target speech. The main idea is that we substi-
tuted the independence of the original source to that of the observed
signal. Equation (8) uses the condition that “Direct sound frame
���	� is independent of ����	���� ���	�����	����”. Instead of
this, we used the condition that “Direct sound frame ���	� is inde-
pendent of ���	� ��� ���	�����	����”. Here, we add 1 frame re-
dundant signal. Note that these two conditions represent the relation-
ship between the sufficient and necessary conditions. If the �� in
Equation. (7) is holomorphic, the equivalence relationship is approx-
imately true because the mapping from ����	���� ���	�����	����
to ���	� ��� ���	�����	���� is bijective and the relationship be-
tween their jouint PDFs is invertible. Whether this works well or not
depends on the time-independence of the speech signal.

If we assume the time-independence of the speech signal, a new
separation model is expressed by substituting the independence of
the observed signal as follows:�
� ���	�
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� �(12)

where �� is an estimated signal vector with 
 dimension,��� and
� �� correspond to 
 � 
 and 
 � 
����� separation matrices,
� � is the 
 � ������ separation matrix, and �� and �� are cor-
responding proper-sized unit matrices. � � � is an initial-reflection
interval parameter and we can consider the dependence between the
direct and adjacent frame of ���	�. Here, we assume � � �.

By minimizing KLD based on a natural gradient [8], this leads
to the the following iterative update rules for the separation matrices
� ���� ��, and� � .
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where � is a step-size parameter, ���� � ������� � � � � ������
� is a

non-linear function vector, and� is a non-holonomic constraint ma-
trix, � � diag�E������	������	��� [9]. We used ����������������
as a non-linear function ���� [10]. Equation (14) is used to estimate
the blind separation filter, � ��, the same as a standard FD-ICA.
Equation (15) and (16) are used to estimate the dereverberant fil-
ter,� ��, and so-called adaptive filter,� �, respectively. Note that
a fast-ICA algorithm [7] cannot be applied because the orthogonal
condition of the separation matrix is not true with this formulation.

3678



Table 1. Configuration of data and separation
Impulse response 16 kHz sampling

Reverberation time (RT��) 240msec. and 670msec.
Distance and direction 1.5m and �Æ, ��Æ, ��Æ, ���Æ, ���Æ

Number of microphones two (embeded at ASIMO’s head)
STFT analysis Hanning: 64msec. and shift: 24 msec.
Input wave data [-1.0 1.0] normalized

Table 2. Configuration for speech recognition
Test set 200 sentences

Training set 200 people (150 sentences each)
Acoustic model PTM-Triphone: 3-state, HMM
Language model Statistical, vocabulary size of 20k
Speech analysis Hanning: 32msec. and shift: 10msec.
Features MFCC 25 dim.(12+�12+�Pow)

3.2. Enforced Spatial Sphering

To reduce the calculation cost of sphering, we fix the spatial sphering
for our separation model by substituting the values of the temporal
and known-source correlation in Equation (10) to zero as,

E����������	 
 diag������� � � � ����� (17)
E��������� ���	 
 diag���� ��� � � � � ���� (18)
E�������� ���	 
 �� E�����������	 
 �� (19)

where �� is a spatial correlation matrix, E����������	, and �� 

E��������� ���	 is a variance of known source �����.

Eventually, in enforced spatial sphering, the observed signal,
����, and the known signal, �����, are transformed as the following
rules:

���� 
 � ������ � � 
 ���
����
� �

�
� � (20)

������ 
 �����
� ������ (21)

where �� and �� are the eigenvector matrix and eigenvalue diago-
nal matrix of��. After sphering, � and �� in Equations. (12) – (16)
are substituted into � and ���.

3.3. Solution to scaling and permutation problems

Scaling: We used the projection back method [11] to solve the scal-
ing problem. This method is achieved by multiplying the diago-
nal element of the inversed separation matrix by the correspond-
ing separated signals. In our case, we used the diagonal element
of �� ��� ��

��.
Permutation: We solved the permutation problem by using the av-
erage power of the separated signal. If the separated signals include
direct and reflected sounds, the power of the direct sound is strongest
in the separated signals. Hence, we selected the signal with max
power.

3.4. Other configurations

Initial value of separation matrix: The initial value of the separa-
tion matrix,� �����, is adjasted to the estimated matrix,� �����
�. We used the unit matrix for the initial value of the first separation
matrix.
Step-size scheduling: The step-size parameter is adjasted by a com-
bination of annealing and the exponentially weighted step-size (EW-
SS) [12] because they reduce the influence of the ignored temporal
correlation when sphering. The step-size, ��, of the separation ma-
trix at the �-th iteration and �-th delayed frame is defined by

�
���
� 


	

�
�� � 
� (22)

where 	, 
 and � are constant values.

4. EXPERIMENTS

4.1. Speech Data and Experimental Setup for ASR

The impulse responses for speech data were recorded at 16 kHz in
two different rooms,
Env. I) a normal room (RT��=240msec), and

Env. II) a hall-like room (RT��=670msec).
Here, RT�� means a reverberation time. The speaker was 1.5m from
a microphone mounted to the head of Honda’s ASIMO, and the an-
gles between the speaker and the front of the ASIMOwere 5 patterns
of 0, 45, 90, -45, -90 degrees. We also recorded the impulse response
about the robot’s speech at each environment.

We used 200 Japanese sentences for the user’s and robot’s
speech, and they were convoluted the corresponding recorded
impulse responses. Julius [13] was used for HMM-based ASR
with statistical language model. Mel-frequncy cepstral coefficients
(MFCC) (12+�12+�Pow) were obtained after STFT with a win-
dow size of 512 points. and a shift size of 160 points. for the speech
features, and we then applied cepstral mean normalization (CMN).
A triphone-based acoustic model (3-state and 4-mixture) was trained
with 150 sentences of clean speech uttered by 200 male and female
speakers (word-closed). The other experimental conditions are
summarized in Tables 1 and 2.

4.2. Evaluation

We carried out two experiments in two environments, Env.I and
Env.II in terms of word correctness (WC):
Exp. A) dereverberation performance, and
Exp. B) dereverberation and echo cancellation performance.
Note that the observed sounds include only user’s speech in Exp.A
and includes user’s and robot’s speech in Exp.B. We changed the
length of observed signal � (denotes number of frames) and the
size of the data to estimate the matrices� ���� �� and� � , i.e.,
with 1, 2, 3 sec block-separated data, and with all data (batch). We
used two microphones in these experiments.

We also evaluated the real-time factor (RTF) in the case of batch
processing at each experiments. RTF is calculated by �� , where
� is a process time and � is a data time (duration). The CPU of
the machine is Intel Pentium D 3.20GHz. In this experiment, we
compared our method to the naive method which is based on the
simple combination of MINT-based model and ICA with sphering.

4.3. Separation parameters

The same parameters for STFT were chosen, and the window size
was � ��� points (64 msec.) which is suboptimal size [5], and its
shift size was ��� points (24 msec.). The step-size parameters were
� 
 ���, 	 
 ������, and 
 
 ������ for block-wise processing,
and � 
 ��� for batch processing. We fixed the maximum number
of the iterations for estimating matrices to 20 because the time for
separation is usually restricted in practical use. With more iteration,
the performance will improve slightly. In block-wise processing, the
estimated� �� in a certain block is used as an initial value for the
� �� of the next block.

5. RESULTS

Figures 4 and 5 present the position-averaged results of Exp.A, Fig-
ures 7 and 8 present those of Exp.B, and Table 3 summarizes the av-
erage improvement in WC. Figures 3 and 6 show the RTF in Exp.A
and Exp.B, respectively.

In Exp.A, our method improved WC by 6 points at Env.I, and
improved it by 45 points at Env.II. In Exp.B, it improved 40 and 30
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Table 3. Best average word correctness (%)
User’s Speech Exp.A (Dereverb.) User’s and Robot’s Exp.B (Dereverb. + echo cancel)
(no proc.) 1 sec. 2 sec. 3 sec. Batch speech (no proc.) 1 sec. 2 sec. 3 sec. Batch

Env.I (RT��=240 [ms]) 74.3 77.7 81.4 83.3 84.2 28.2 60.9 69.0 72.0 73.2
Env.II (RT��=670 [ms]) 26.1 64.1 68.0 70.6 72.9 11.0 33.2 40.8 41.5 50.0
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Fig. 4. Results of Exp.A in Env.I

�

��

��

��

��

���

� � �� �� �� ��
	
�������������	���

�
�
��
��
�
��
�
	


�
�
�
�
�
�
�

����� ����� ����� ����� ��������

Fig. 5. Results of Exp.A in Env.II
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Fig. 7. Results of Exp.B in Env.I
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Fig. 8. Results of Exp.B in Env.II

points in the two environments, respectively. We can see that the
RTF and the number of frame � is proportional relationship unlike
naive method. We concluded that our method works well in almost
all situations.

The number of samples seriously affects the performance, but
around 2–3 sec. data seem to be sufficient. To improve the per-
formance more, we must improve or develop adaptive step-size
scheduling and adaptive frame-length � estimation for our method.
In fact, performance can still be improved by 1 – 5 points by
changing parameter � according to all conditions. These parameter
optimization is future work.

6. CONCLUSION

We developed a robot audition system that enabled barge-in for
smooth speech interaction. To suppress reverberation and robot’s
speech, we introduced a MINT-based model of observation to FD-
ICA. We reduced the calculation cost by using two techniques; 1) a
separation model based on the independence between a direct sound
signal and observed signals, and 2) enforced spatial sphering. The
experimental results demonstrated the effectiveness of our methods.

In the future, we intend to work on step-size scheduling and
adapting � for real-time implementation. We also intend to analyze
the estimated filter and evaluate it when there are other sound sources
in parallel. To accomplish more efficient processing, we need to in-
tegrate it with other methods according to the existing conditions.
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