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Abstract—The paper considers the algorithm NLU for dis-
tributed (vector) parameter estimation in sensor networks, where,
the local observation models are nonlinear, and inter-sensor com-
munication is imperfect, in the sense, that the network links fail
randomly and inter-sensor transmission is quantized. The paper
introduces the class of separably estimable observation models,
which generalizes the notion of observability in centralized linear
estimation to distributed nonlinear estimation. We show that the
NLU algorithm leads to consistent and asymptotically unbiased
estimates of the parameter at each sensor for separably estimable
observation models. In other words, the sensors reach consensus
almost sure (a.s.) to the true parameter value. The algorithm
NLU is a mixed time scale stochastic algorithm, characterized
by two different decreasing weight sequences associated with the
consensus and innovation updates. The analysis of the NLU
algorithm, thus, does not follow under the purview of standard
stochastic approximation, making the analysis developed in the
paper of independent theoretical interest.
Index Terms—Distributed parameter estimation, separably

estimable, stochastic approximation, Laplacian, consenus.

I. INTRODUCTION
A. Background and Motivation
Wireless sensor network (WSN) applications generally con-

sist of a large number of sensors which coordinate to perform
a task in a distributed fashion. Unlike fusion-center based
applications, there is no center, and the task is performed
locally at each sensor with intermittent inter-sensor mes-
sage exchanges. In a coordinated environment monitoring or
surveillance task, it translates to each sensor observing a part
of the field of interest. With such local information, it is not
possible for a particular sensor to get a reasonable estimate
of the field. Then, the sensors need to cooperate, and this is
achieved by intermittent data exchanges among the sensors,
whereby each sensor fuses its version of the estimate from
time to time with those of other sensors with which it can
communicate. We consider the above problem in this paper in
the context of distributed parameter estimation in WSNs. As an
abstraction of the environment, we model it by a static vector
parameter, whose dimension, M , can be arbitrarily large. We
assume that each sensor receives noisy measurements (not
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necessarily additive) of only a part of the parameter vector.
More specifically, if Mn is the dimension of the observation
space of the n-th sensor, Mn � M . Assuming that the rate
of receiving observations at each sensor is comparable to the
data exchange rate among sensors, each sensor updates its
estimate at time index i by fusing it appropriately with the
observation (innovation) received at i and the estimates at i
of those sensors with which it can communicate at i. In this
context, we note that the linear distributed estimation problem
has been studied in the literature in non-random networks
with unquantized communication, where the observation and
consensus protocols are incorporated in the same iteration
(see [1], [2], [3], [4].) In this paper we propose and study
a generic recursive distributed iterative estimation algorithm,
namely, NLU for distributed parameter estimation with possi-
bly nonlinear observation models at each sensor (see also [5].)
As is required, even by centralized estimation schemes, for the
estimate sequences generated by the NLU algorithm at each
sensor to have desirable statistical properties, we impose an
observability condition. To this end, we introduce a generic
observability condition, the separably estimable condition
for distributed parameter estimation in nonlinear observation
models, which generalizes the observability condition of cen-
tralized parameter estimation.

The inter-sensor communication is quantized and the com-
munication links among sensors are subject to random failures.
This is appropriate, for example, in digital communication
in WSN when the data exchanges among a sensor and its
neighbors are quantized, and the communication channels
may fail, e.g., as when packet dropouts occur randomly. We
consider a very generic model of temporally independent link
failures, whereby it is assumed that the sequence of network
Laplacians, {L(i)}i≥0 are i.i.d. with mean L and satisfying
λ2(L) > 0 (see paper for details.) We show that under
these conditions, the NLU algorithm leads to a consistent
and asymptotically unbiased estimate of the parameter at each
sensor for separably estimable observation models. In other
words, the sensors reach consensus almost sure (a.s.) to the
true parameter value. In the context of stochastic algorithms,
NLU can be viewed as exhibiting mixed time-scale behavior
(the weight sequences associated with the consensus and
innovation updates decay at different rates) and consisting of
unbiased perturbations (see [5] for a detailed explanation.)
The NLU algorithm does not fall under the purview of
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standard stochastic approximation theory, and its analysis
requires an altogether different framework as presented in the
paper.
We comment briefly on the organization of the rest of the

paper. Subsection I-B sets basic notation and preliminaries
about spectral graph theory and statistical quantization theory.
Section II formulates the problem with the required assump-
tions and presents the algorithm NLU . The main results
regarding the convergence properties of the NLU algorithm
are stated in Section III, whose proofs can be found in [5].
Finally, Section IV concludes the paper.

B. Notation and Preliminaries
For completeness, this subsection sets notation and presents

preliminaries on algebraic graph theory, matrices, and dithered
quantization to be used in the sequel.
Preliminaries. We denote the k-dimensional Euclidean

space by R
k×1. The k × k identity matrix is denoted by Ik,

while 1k,0k denote respectively the column vector of ones
and zeros in R

k×1. We also define the rank one k × k matrix
Pk by

Pk =
1
k
1k1T

k (1)

The only non-zero eigenvalue of Pk is one, and the corre-
sponding normalized eigenvector is

(
1/

√
k
)
1k. The operator

‖·‖ applied to a vector denotes the standard Euclidean 2-norm,
while applied to matrices denotes the induced 2-norm, which is
equivalent to the matrix spectral radius for symmetric matrices.
We assume that the parameter to be estimated belongs to
a subset U of the Euclidean space R

M×1. Throughout the
paper, the true (but unknown) value of the parameter is
denoted by θ∗. We denote a canonical element of U by θ.
The estimate of θ∗ at time i at sensor n is denoted by
xn(i) ∈ R

M×1. Without loss of generality, we assume that the
initial estimate, xn(0), at time 0 at sensor n is a non-random
quantity. Throughout, we assume that all the random objects
are defined on a common measurable space, (Ω,F). In case
the true (but unknown) parameter value is θ∗, the probability
and expectation operators are denoted by Pθ∗ [·] and Eθ∗ [·],
respectively. When the context is clear, we abuse notation by
dropping the subscript. Also, all inequalities involving random
variables are to be interpreted a.s.
Spectral graph theory. We model the inter-sensor commu-

nication graph at time index i by a simple undirected graph
G(i) = (V,E(i)), where V is the set of sensors with |V | = N
and E(i) denotes the (random) set of edges (communication
links) active at i. The neighborhood of node n at i is

Ωn(i) = {l ∈ V | (n, l) ∈ E(i)} (2)

Node n has degree dn(i) = |Ωn(i)| at i. The structure of the
graph can be described by the symmetric N × N adjacency
matrix, A(i) = [Anl(i)], Anl(i) = 1, if (n, l) ∈ E(i),
Anl(i) = 0, otherwise. Let the degree matrix be the diagonal
matrix D(i) = diag (d1(i) · · · dN (i)). The graph Laplacian
matrix, L(i), at i, is

L(i) = D(i) − A(i) (3)

The Laplacian is a positive semidefinite matrix; hence, its
eigenvalues can be ordered as

0 = λ1(L(i)) ≤ λ2(L(i)) ≤ · · · ≤ λN (L(i)) (4)

The smallest eigenvalue λ1(L(i)) is always equal to zero, with

(
1/

√
N

)
1N being the corresponding normalized eigenvector.

The multiplicity of the zero eigenvalue equals the number
of connected components of the network; for a connected
graph, λ2(L(i)) > 0. This second eigenvalue is the algebraic
connectivity or the Fiedler value of the network; see [6] for
detailed treatment of graphs and their spectral theory.
We now review results from statistical quantization theory.
Quantizer: We assume that all sensors are equipped with

identical quantizers, which uniformly quantize each com-
ponent of the M -dimensional estimates by the quantizing
function, q(·) : R

M×1 → QM . For y ∈ R
M×1 we have,

q(y) = [k1Δ, · · · , kMΔ] = y + e(y), where

(km − 1
2
)Δ ≤ yi < (km +

1
2
)Δ, 1 ≤ m ≤ M (5)

Δ
2

1N ≤ e(y) <
Δ
2

1N (6)

and e(y) is the quantization error and the inequalities are
interpreted component-wise. The quantizer alphabet is

QM =
{

[k1Δ, · · · , kMΔ]T
∣∣∣ ki ∈ Z, ∀i

}
(7)

We take the quantizer alphabet to be countable because no à
priori bound is assumed on the parameter. Conditioned on the
input, the quantization error e(y) is deterministic. This strong
correlation of the error with the input creates unacceptable
statistical properties. In particular, for iterative algorithms, it
leads to error accumulation and divergence of the algorithm
(see the discussion in [7].) To avoid this divergence, we
consider dithered quantization, which makes the quantization
error possess nice statistical properties. We review briefly
basic results on dithered quantization, which are needed in
the sequel.
Dithered Quantization: Schuchman Conditions Consider

a uniform scalar quantizer q(·) of step-size Δ, where y ∈ R is
the channel input. Let {y(i)}i≥0 be a scalar input sequence to
which we added a dither sequence {ν(i)}i≥0 of i.i.d. uniformly
distributed random variables on [−Δ/2, Δ/2), independent of
the input sequence {y(i)}i≥0. This is a sufficient condition
for the dither to satisfy the Schuchman conditions (see [8]).
Under these conditions, the error sequence for subtractively
dithered systems ([9]) {ε(i)}i≥0

ε(i) = q(y(i) + ν(i)) − (y(i) + ν(i)) (8)

is an i.i.d. sequence of uniformly distributed random variables
on [−Δ/2, Δ/2), which is independent of the input sequence
{y(i)}i≥0. To be more precise, this result is valid if the
quantizer does not overload, which is trivially satisfied here
as the dynamic range of the quantizer is the entire real line.
Thus, by randomizing appropriately the input to a uniform
quantizer, we can render the error to be independent of the
input and uniformly distributed on [−Δ/2, Δ/2). This leads
to nice statistical properties of the error, which we will exploit
in this paper.

II. PROBLEM FORMULATION AND ALGORITHM NLU
In this section we present the NLU algorithm for dis-

tributed parameter estimation in separably estimable observa-
tion models. We start by formally listing the assumptions on
the observation model (we introduce the notion of separably
estimable) and the inter-sensor communication process involv-
ing random link failures and dithered quantized transmission.
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A.1)Nonlinear Observation Model: Let θ∗ ∈ U ⊂ R
M×1 be

the true but unknown parameter value. In the general case, we
assume that the observation model at each sensor n consists
of an i.i.d. sequence {zn(i)}i≥0 in R

Mn×1 with

Pθ∗ [zn(i) ∈ D] =
∫
D

dFθ∗ , ∀ D ∈ B
Mn×1 (9)

where Fθ∗ denotes the distribution function of the random
vector zn(i) and BMn×1 is the Borel sigma algebra of
R

Mn×1. We assume that the distributed observation model
is separably estimable, a notion which we introduce now.

Definition 1 (Separably Estimable) Let {zn(i)}i≥0 be the
i.i.d. observation sequence at sensor n, where 1 ≤ n ≤ N .
We call the parameter estimation problem to be separably
estimable, if there exist functions gn(·) : R

MN×1 
−→
R

M×1, ∀1 ≤ n ≤ N , such that the function h(·) :
R

M×1 
−→ R
M×1 given by

h(θ) =
1
N

N∑
n=1

Eθ [gn(zn(i))] (10)

is invertible1

Before proceeding to interpret the notion of separably es-
timable models, we illustrate with a motivating example:
Example: Linear Model: Let θ ∈ R

M×1 be an M -
dimensional parameter that is to be estimated by a network
of N sensors. Each sensor makes i.i.d. observations of noise
corrupted linear functions of the parameter. We assume the
following observation model for the n-th sensor:

zn(i) = Hnθ∗ + ζn(i) (11)

where
{
zn(i) ∈ R

Mn×1
}

i≥0
is the i.i.d. observation se-

quence for the n-th sensor, {ζn(i)}i≥0 is a zero-mean
i.i.d. noise sequence of bounded variance and Hn denotes
the observation matrix at the n-th sensor. For most practical
sensor network applications, each sensor observes only a
subset ofMn of the components of θ, withMn � M . Under
such a situation, in isolation, each sensor can estimate at
most only a part of the parameter. On the other extreme, for
a centralized scheme (a fusion center architecture, where all
sensors dump their observations) to get a consistent estimate
of the parameter, certain observability conditions need to be
satisfied by the matrices Hn. To this end, define the matrix

G =
N∑

n=1

HT
n Hn (12)

It is well known from the theory of linear estimation, that a
necessary and sufficient condition for a centralized estimator
to yield consistent estimates of the parameter, requires the
matrix G to be full-rank (invertible). We now show that, if
G is full-rank, then the linear observation model in eqn. (11)
becomes separably estimable (see defn. (1)) and hence the
NLU algorithm will lead to asymptotically consistent esti-
mates at each sensor. Indeed, if, assuming the linear model,
we define gn(θ) = H

T

nθ, ∀1 ≤ n ≤ N in eqn. (10), we have
h(θ) = Gθ, where G is defined in eqn. (12). Then, separably

1The factor 1
N
in eqn. (10) is just for notational convenience, as will be

seen later. Also, the R.H.S. of eqn. (10) may not be defined for θ /∈ U . In
that case, we assume that h(·) has been properly extended to R

M×1.

estimable reduces to the invertibility of G. In fact, it also
illustrates the generality of the notion of separably estimable
and the algorithm NLU , in the sense, that the sufficient
condition required by the distributed NLU algorithm is the
necessary condition required by the centralized estimator.
In this regard, the notion of separably estimable can be
viewed as an extension of the notion of observability in
linear centralized models to nonlinear distributed models.
Note that, if an observation model is separably estimable,
then the choice of functions gn(·) is not unique.
At a particular iteration i, we do not require the observations
across different sensors to be independent. In other words, we
allow spatial correlation, but require temporal independence.
A.2)Random Link Failure: The graph Laplacians are

L(i) = L + L̃(i), ∀i ≥ 0 (13)

where {L(i)}i≥0 is a sequence of i.i.d. Laplacian matrices
with mean L = E [L(i)], such that λ2

(
L

)
> 0 (we just

require the network to be connected on the average.) We do
not make any distributional assumptions on the link failure
model. During the same iteration, the link failures can be spa-
tially dependent, i.e., correlated across different edges of the
network. This model subsumes the erasure network model,
where the link failures are independent both over space and
time. Wireless sensor networks motivate this model since
interference among the sensors communication correlates the
link failures over space, while over time, it is still reasonable
to assume that the channels are memoryless or independent.
We also note that the above assumption λ2

(
L

)
> 0 does not

require the individual random instantiations of L(i) to be
connected; in fact, it is possible to have all the instantiations
to be disconnected. This enables us to capture a broad
class of asynchronous communication models, for example,
the random asynchronous gossip protocol analyzed in [10]
satisfies λ2

(
L

)
> 0 and hence falls under this framework.

More generally, in the asynchronous set up, if the sensors
nodes are equipped with independent clocks whose ticks
follow a regular random point process (the ticking instants do
not have an accumulation point, which is true for all renewal
processes, in particular, the Poisson clock in [10]), and at
each tick a random network is realized with λ2

(
L

)
> 0

independent of the the networks realized in previous ticks
(this is the case with the link formation process assumed
in [10]) our model applies.
A.3)Dithered Quantized Communication The sensors ex-
change quantized messages, where dither is added before
quantization (see Subsection I-B.)

We now present the algorithm NLU .
Algorithm NLU : Let x(0) = [xT

1 (0) · · ·xT
N (0)]T be the

initial set of states (estimates) at the sensors. The NLU
generates the state sequence {xn(i)}i≥0 at the n-th sensor
according to the following distributed recursive scheme:

xn(i + 1) = h−1

⎛⎝h(xn(i)) − β(i)

⎛⎝ ∑
l∈Ωn(i)

(h(xn(i))

−q (h(xl(i)) + νnl(i)))) − α(i) (h(xn(i))
−gn(zn(i)))) (14)

based on the information,
xn(i), {q (h(xl(i)) + νnl(i))}l∈Ωn(i) , zn(i), available to it at
time i (we assume that at time i sensor l sends a quantized
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version of h(xl(i)) + νnl(i) to sensor n, where {νnl(i)} is
the dither sequence.) Here h−1(·) denotes the inverse of the
function h(·) and {β(i)}i≥0 , {α(i)}i≥0 are appropriately
chosen weight sequences. In the sequel, we analyze the NLU
algorithm under the model Assumptions A.1-A.3, and in
addition we assume:
A.4)Independence and Moment Assumptions. The se-
quences {L(i)}i≥0,{zn(i)}1≤n≤N, i≥0,{νm

nl(i)} (the dither
sequence) are mutually independent. We also make the
following moment assumption: There exists ε1 > 0, such
that the following moment exists ∀θ ∈ U :

Eθ

[∥∥∥∥J(z(i)) − 1
N

(1N ⊗ IM )T
J(z(i))

∥∥∥∥2+ε1
]

= κ(θ) < ∞
(15)

where J(z(i)) = [gT
1 (z1(i)) · · · gT

N (zN (i))]T and
⊗
denotes

Kronecker product.
A.5): The weight sequences {β(i)}i≥0,{β(i)}i≥0 are given
by

α(i) =
a

(i + 1)τ1
, β(i) =

b

(i + 1)τ2
(16)

where a, b > 0 are constants. We assume the following:

.5 < τ1, τ2 ≤ 1, τ1 >
1

2 + ε1
+ τ2, 2τ2 > τ1 (17)

We note that under Assumption A.4) that ε1 > 0, such weight
sequences always exist. As an example, if 1/(2 + ε1) = .49,
then the choice τ1 = 1 and τ2 = .505 satisfies the inequal-
ities in eqn. (17). Also, note that, under this assumption,
limi→∞ β(i)/α(i) = ∞, giving NLU a mixed time-scale
behavior.
A.6): The function h(·) has a continuous inverse, denoted by
h−1(·) in the sequel.

III. STATEMENT OF MAIN RESULTS
In this section, we state the main results regarding consis-

tency and asymptotic unbiasedness of the NLU algorithm.
We start by introducing some terminology from the sequential
estimation literature (see, for example, [11]).

Definition 2 (Consistency) : A sequence of estimates
{x•(i)}i≥0 is called consistent if

Pθ∗
[

lim
i→∞

x•(i) = θ∗
]

= 1, ∀θ∗ ∈ U (18)

or, in other words, if the estimate sequence converges a.s. to
the true parameter value. The above definition of consistency
is also called strong consistency. When the convergence is in
probability, we get weak consistency. In this paper, we use the
term consistency to mean strong consistency, which implies
weak consistency.

Definition 3 (Asymptotic Unbiasedness) :

A sequence of estimates {x•(i)}i≥0 is called asymptotically
unbiased if

lim
i→∞

Eθ∗ [x•(i)] = θ∗, ∀θ∗ ∈ U (19)

We now state the main result characterizing the convergence
properties of the NLU algorithm.

Theorem 4 Consider the NLU algorithm under the Assump-
tions A.1)-A.6). Let {x(i)}i≥0 be the state sequence generated,
as given by eqns. (14). We then have

Pθ∗
[

lim
i→∞

xn(i) = θ∗, ∀ 1 ≤ n ≤ N
]

= 1 (20)

In other words, the NLU algorithm is consistent.
If in addition, the function h−1(·) is Lipschitz continuous,

the NLU algorithm is asymptotically unbiased, i.e.,
lim

i→∞
Eθ∗ [xn(i)] = θ∗, ∀ 1 ≤ n ≤ N (21)

Proof: For a proof, see [5].
Theorem 4 thus states that the sensors reach consensus asymp-
totically and the limiting consensus state is the true value
of the parameter vector, θ∗. Also, under the assumption of
Lipschitz continuity of h−1(·) (which, for example, holds for
the linear model example, given in Assumption A.1)), we have
asymptotic unbiasedness.

IV. CONCLUSION
The paper presents the NLU algorithm for distributed

parameter estimation in sensor networks, where the obser-
vation model at each sensor is possibly nonlinear and inter-
sensor communication is imperfect because of random link
failures and quantized inter-sensor transmission. We introduce
the notion of separably estimable observation models, which
generalize the notion of observability in linear centralized
estimation to nonlinear decentralized estimation. We show
that, for such models, the NLU algorithm yields consistent
and asymptotically unbiased estimates of the parameter value
at each sensor. The algorithm NLU is quite general, in this
regard, as it does not require any distributional assumptions on
the observation process, only some moment conditions suffice.
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