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Abstract—We consider constrained minimization of a sum of
convex functions over a convex and compact set, when each
component function is known only to a specific agent in a time-
varying peer to peer network. We study an iterative optimization
algorithm in which each agent obtains a weighted average of its
own iterate with the iterates of its neighbors, updates the average
using the subgradient of its local function and then projects
onto the constraint set to generate the new iterate. We obtain
error bounds on the limit of the function value when a constant
stepsize is used.

Index Terms—distributed optimization, time-varying network,
subgradient algorithm.

I. INTRODUCTION

A number of problems arising in the context of wired and

wireless networks can be posed as the minimization of a sum

of functions, when each component function is available only

to a specific agent [1]–[3]. In many scenarios, it is not efficient,

or not possible, for the network agents to share their objective

functions with each other or with a central coordinator. For

example, in a large wireless network, energy is a scarce

resource and it may not be efficient for a central coordinator

to learn the individual objective functions from each and every

agent [1]. In a network of databases from which information is

to be mined, privacy considerations may prohibit the sharing of

the objective functions [4]. In a distributed network on a single

chip, for the chip to be fault tolerant, it is desirable to perform

the processing in a distributed manner to account for the

statistical process variations [5]. In these settings, distributed

algorithms are preferable that only require the agents to locally

exchange limited and high level information.
We consider constrained minimization of a sum of convex

functions, where each component function is known only to a

specific network agent. The algorithm is a modification of the

distributed algorithm proposed in [6] for unconstrained mini-

mization. Each network agent maintains and updates its own

iterate, and communicates the iterate to a subset of neighboring

agents. The agent information exchange model is a delayless

version of the computational model proposed by Tsitsiklis [7].

Each agent combines the received iterates with its own iterate,

and then adjusts the iterate by using information of its own

objective function. The algorithm is distributed since there is

no central coordinator. Also, the algorithm is local since each

agent uses only locally available information of its function

and communicates only with its neighbors.
Related distributed and local algorithms are incremental

methods, where the network agents sequentially update the

iterate in a cyclic or a random order [8], [2] (and references

therein). In an incremental algorithm, only one agent updates

the iterate at a given time. While distributed and local, in-

cremental algorithms differ fundamentally from the algorithm

studied in this paper, where all agents update simultaneously.

Also related are the optimization algorithms in [9], which

however, are not local as the objective function information

is available to each agent.

This paper contributes to the literature on distributed op-

timization. The novelty of the paper is the consideration of

constrained optimization problem within the distributed multi-

agent setting. The presence of the constraint set complicates

the model by introducing non-linearities in the agent system

dynamics. The closest related work is [6], where unconstrained

problem has been considered. Another closely related work is

[10], where pure consensus problem has been investigated in

the presence of constraints.

The rest of the paper is organized as follows. In Section II,

we formulate the problem, describe the algorithm, and state

our basic assumptions on the agent connectivity and infor-

mation exchange. In Section III, we obtain an error bound

on the algorithm’s performance. We provide some concluding

remarks in Section IV.

II. PROBLEM FORMULATION AND ALGORITHM

We consider a network of m agents that are indexed by

1, . . . ,m. Often, when convenient, we index the agents by

using set V = {1, . . . ,m}. The network objective is to solve

the following constrained optimization problem:

minimize

m∑
i=1

fi(x)

subject to x ∈ X, (1)

where X ⊆ �n is a constraint set and fi : X → � for all i.
The function fi is known only to agent i.

The goal is to solve problem (1) using a distributed al-

gorithm in which the agents do not share the component

functions with each other, but only exchange the iterates with

their immediate neighbors in each iteration.

A. Algorithm

Let wi,k be the iterate with agent i at the end of iteration

k. At the beginning of iteration k + 1, agent i receives the

iterates wj,k of a subset of neighboring agents j. Then, agent
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i computes a weighted average of these iterates and adjusts this

average along the negative gradient direction of fi. Formally,

each agent i generates an iterate sequence {wi,k} as follows:

wi,k+1 = PX [vi,k − α∇fi (vi,k)] , (2)

where wi,0 ∈ X is some initial iterate, α is the stepsize,

∇fi(x) denotes the gradient of fi at x, and PX denotes the

Euclidean projection onto the set X. The vector vi,k is the

weighted average computed by agent i, given by

vi,k =
∑

j∈Ni(k+1)

ai,j(k + 1)wj,k, (3)

where Ni(k + 1) denotes the set of agents whose current

iterates are available to agent i in the (k + 1)-th iteration.

We assume that i ∈ Ni(k +1) for all agents i and at all times

k. The scalars ai,j(k + 1) are the non-negative weights that

agent i assigns to agent j’s iterate. For convenience, we define

ai,j(k + 1) = 0 for j �∈ Ni(k + 1) and rewrite (3) as

vi,k =
m∑

j=1

ai,j(k + 1)wj,k. (4)

The rule for selecting the weights is discussed, among other

assumptions, in the next section.

B. Assumptions

We define f(x) =
∑m

i=1 fi(x), f∗ = minx∈X f(x), and

X∗ = {x ∈ X : f(x) = f∗}. We make the following basic

assumptions on the constraint set X and the functions fi.
Assumption 1: The set X ⊆ �n is convex and compact.

The functions fi, i ∈ V, are defined and convex over an open

set that contains the set X.
This assumption is satisfied for example when each func-

tion fi is defined and convex over the entire space �n.

An immediate consequence of the assumption is that the

functions fi are continuous over the compact set X . Thus,

by Weierstrass theorem, the optimal value f∗ of the problem

is finite and the optimal set X∗ is nonempty.

We make no assumption on the differentiability of the

functions fi. At points where the gradient does not exist,

∇fi(x) will instead denote a subgradient of fi at x. A vector

∇fi(x) is a subgradient of fi at a point x if

∇fi(x)T (y − x) ≤ fi(y) − fi(x) for all y ∈ X. (5)

A subgradient of fi exists at any point of the set X since X
is contained in an open set over which each fi is assumed

to be convex (see [11]). When fi is differentiable at a point,

the only subgradient is the gradient. To keep the discussion

general, we refer to ∇fi as a subgradient in the rest of the

paper. Further, the subgradients are bounded since the set X
is bounded1. We use Ci to denote a bound on the subgradients

of fi over the set X , i.e., for each i,

‖∇fi(x)‖ ≤ Ci for all x ∈ X.

1See [11], Proposition 4.2.3.

The next assumption ensures that the agents communicate

sufficiently often so that all component functions, directly or

indirectly, influence the iterate sequence of any agent. Using

the set Ni(k + 1) of agents communicating with agent i at

time k + 1, we define (V,Ek+1) to be the graph with edges

Ek+1 = {(j, i) : j ∈ Ni(k + 1), i ∈ V }.
Assumption 2: There exists an integer Q ≥ 1 such that the

graph (V,∪l=1,...,QEk+l) is strongly connected for all k.
It is important that the influence of agent i is “equal” in

a long run, so that the sum of the functions fi is minimized

rather than a weighted sum of them. To ensure equal influence,

we make the following assumption on the weights.

Assumption 3: For all i ∈ V and all k,

(a) ai,j(k+1) ≥ 0, and ai,j(k+1) = 0 when j /∈ Ni(k+1),
(b)

∑m
j=1 ai,j(k + 1) = 1,

(c) There exists a scalar η, 0 < η < 1, such that ai,j(k +
1) ≥ η when j ∈ Ni(k + 1),

(d)
∑m

i=1 ai,j(k + 1) = 1.

Assumptions 3(a) and 3(b) state that each agent uses a

weighted average of all the iterates it has access to. Assump-

tion 3(c) ensures that each agent gives a sufficient weight to

its iterate and all the iterates it receives.2 Assumption 3(d),

together with Assumption 2, ensures that all agents are equally

influential in a long run. To satisfy Assumption 3(d), the agents

need to coordinate their weights, as discussed in [2], [6].

C. Preliminaries

Let A(k) be the matrix with (i, j)-th entry equal to ai,j(k).
As a consequence of Assumptions 3(a), 3(b) and 3(d), the

matrix A(k) is doubly stochastic3. Define, for all k, s with

k ≥ s,

Φ(k, s) = A(k)A(k − 1) · · ·A(s + 1). (6)

We next state a result from [12] (Corollary 1) on the conver-

gence of the matrix Φ(k, s). Let [Φ(k, s)]i,j denote the (i, j)-th
entry of the matrix Φ(k, s), and let e ∈ �m be the column

vector with all entries equal to 1.
Lemma 1: Let Assumptions 2 and 3 hold. Then

1) limk→∞ Φ(k, s) = 1
m eeT for all s.

2) Further, the convergence is geometric and the rate of

convergence is given by∣∣∣∣[Φ(k, s)]i,j − 1
m

∣∣∣∣ ≤ θβk−s,

where θ =
(
1 − η

4m2

)−2
and β =

(
1 − η

4m2

) 1
Q .

III. ALGORITHM ANALYSIS

We first use Lemma 1 to estimate the difference between the

iterates across agents. For this, we introduce auxiliary vectors

yk =
1
m

m∑
i=1

wi,k for all k. (7)

2Agents need not be aware of the common bound η.
3The sum of its entries in every row and in every column is equal to 1.
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The following result relates these vectors to the agent iterates.

Lemma 2: Under Assumptions 1–3, we have for all j ∈ V ,

limsup
k→∞

‖yk − wj,k‖ ≤ α

(
2 +

mθβ

1 − β

)
max
i∈V

Ci.

Proof: Define for all i ∈ V and all k,

pi,k+1 = wi,k+1 −
m∑

j=1

ai,j(k + 1)wj,k. (8)

Using the matrices Φ(k, s) in (6), we can write (as in [13])

wi,k+1 =
m∑

j=1

[Φ(k + 1, s)]i,jwj,s + pi,k+1

+
k∑

�=s+1

⎛
⎝ m∑

j=1

[Φ(k + 1, �)]i,jpj,�

⎞
⎠ . (9)

We can also rewrite yk, defined in (7), as follows

yk+1 =
1
m

⎛
⎝ m∑

j=1

m∑
i=1

ai,j(k + 1)wj,k +
m∑

i=1

pi,k+1

⎞
⎠ .

In the view of
∑m

i=1 ai,j(k + 1) = 1, we have

yk+1 =
1
m

⎛
⎝ m∑

j=1

wj,k +
m∑

i=1

pi,k+1

⎞
⎠ = yk +

1
m

m∑
i=1

pi,k+1.

Therefore, for any s ≤ k + 1,

yk+1 = ys +
1
m

k+1∑
�=s+1

m∑
j=1

pj,�

=
1
m

m∑
j=1

wj,s +
1
m

k+1∑
�=s+1

m∑
j=1

pj,�. (10)

Substituting for yk+1 from (10) and for wj,k+1 from (9),
we obtain

‖yk+1 − wj,k+1‖ =

‚‚‚‚‚
mX

i=1

„
1

m
− [Φ(k + 1, s)]j,i

«
wi,s

+
kX

�=s+1

mX
i=1

„
1

m
− [Φ(k + 1, �)]j,i

«
pi,�

+

 
1

m

mX
i=1

pi,k+1 − pj,k+1

!‚‚‚‚‚ .

Therefore, for all j ∈ V and all k, s with s ≤ k + 1,

‖yk+1 − wj,k+1‖ ≤
mX

i=1

˛̨̨
˛ 1

m
− [Φ(k + 1, s)]j,i

˛̨̨
˛ ‖wi,s‖

+
kX

�=s+1

mX
i=1

˛̨̨
˛ 1

m
− [Φ(k + 1, �)]j,i

˛̨̨
˛ ‖pi,�‖

+
1

m

mX
i=1

‖pi,k+1‖+ ‖pj,k+1‖ .

We have ‖wi,s‖ ≤ maxx∈X ‖x‖ . Further, by using the result

from Lemma 1 to bound
∣∣ 1
m − [Φ(k, �)]j,i

∣∣ , we obtain

‖yk+1 − wj,k+1‖ ≤ mθβk+1−s max
x∈X

‖x‖

+θ

k∑
�=s+1

βk+1−�
m∑

i=1

‖pi,�‖

+
1
m

m∑
i=1

‖pi,k+1‖ + ‖pj,k+1‖(11)

We next estimate the norms ‖pi,k‖ for any k. From the

definition of pi,k+1 in (8) and the definition of the vector vi,k

in (3), we have pi,k+1 = wi,k+1 − vi,k. Being a weighted

average of vectors wj,k in the convex set X , the vector vi,k

is in the set X . By the definition of wi,k+1 in (2) and the

non-expansive property of the Euclidean projection, we have

‖pi,k+1‖ = ‖PX [vi,k − α∇fi(vi,k)] − vi,k‖
≤ α ‖∇fi(vi,k)‖ .

Since the subgradients of fi are bounded by Ci over the set X,
we have ‖pi,k+1‖ ≤ αCi. Using this and

∑k
�=s+1 βk+1−� =∑k−s

t=1 βt in (11), we obtain

‖yk+1 − wj,k+1‖ ≤mθβk+1−s max
x∈X

‖x‖+ αθ

k−sX
t=1

βt
mX

i=1

Ci

+ α
1

m

mX
i=1

Ci + αCj . (12)

The result follows by setting s = 1 and letting k → ∞.
Using Lemma 2, we now provide an error bound on the

values of the objective function f at the agent iterates.
Theorem 1: Under Assumptions 1–3 we have for all j ∈ V ,

liminf
k→∞

f(wj,k) ≤ f∗ + α max
�∈V

C�

 
mX

i=1

Ci

!„
9

2
+

2mθβ

1− β

«
.

Proof: Using the non-expansive property of the Euclidean

projection, the definition of the iterate wi,k+1 in (2) and the

subgradient inequality in (5), we have for any x∗ ∈ X∗ and k,

‖wi,k+1 − x∗‖2 ≤‖vi,k − x∗‖2 − 2α (fi(vi,k) − fi(x∗))

+ α2 ‖∇fi(vi,k)‖2
.

Summing over i ∈ V and using ‖∇fi(vi,k)‖ ≤ Ci, we obtain

m∑
i=1

‖wi,k+1 − x∗‖2 ≤
m∑

i=1

‖vi,k − x∗‖2 + α2
m∑

i=1

C2
i

− 2α
m∑

i=1

(fi(vi,k) − fi(x∗)) .

Convexity of the Euclidean norm and Assumption 3 imply∑m
i=1 ‖vi,k+1−x∗‖2 ≤ ∑m

j=1 ‖wj,k+1−x∗‖2. Combined with

the preceding relation, this yields for any x∗ ∈ X and all k,

m∑
i=1

‖vi,k+1 − x∗‖2 ≤
m∑

i=1

‖vi,k − x∗‖2 + α2
m∑

i=1

C2
i

−2α

m∑
i=1

(fi(vi,k) − fi(x∗)) .
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In view of the subgradient boundedness, from (5) we have

fi(vi,k) − fi(x∗) ≥ (fi(vi,k) − fi(yk)) + (fi(yk) − fi(x∗))
≥− Ci‖yk − vi,k‖ + (fi(yk) − fi(x∗)) .

Substituting for vi,k+1 from (4) and using the convexity of the

norm, we have ‖yk − vi,k‖ = ‖yk −
∑m

j=1 ai,j(k +1)wj,k‖ ≤∑m
j=1 ai,j(k + 1)‖yk −wj,k‖. Using this and

∑m
i=1 fi(x∗) =

f∗, from the preceding relation we obtain

m∑
i=1

(fi(vi,k) − fi(x∗))

≥ −
(

max
�∈V

C�

) m∑
j=1

m∑
i=1

ai,j(k + 1)‖yk − wj,k‖ + f(yk) − f∗

= −
(

max
�∈V

C�

) m∑
j=1

‖yk − wj,k‖ + f(yk) − f∗.

Therefore, it follows

mX
i=1

‖vi,k+1 − x∗‖2 ≤
mX

i=1

‖vi,k − x∗‖2 − 2α (f(yk)− f∗)

+ α2
mX

i=1

C2
i + 2α

„
max
�∈V

C�

« mX
j=1

‖yk − wj,k‖.

Using (12) with appropriate k, and s = k−1−τ for τ ≤ k−1,
we obtain

mX
j=1

‖yk − wj,k‖ ≤m2θβτ max
x∈X

‖x‖+

 
mX

i=1

Ci

!„
mαθβ

1− β
+ 2α

«
.

From the preceding two relations it follows for τ ≤ k − 1,

m∑
i=1

‖vi,k+1 − x∗‖2

≤
m∑

i=1

‖vi,k − x∗‖2 − 2α (f(yk) − f∗) + α2
m∑

i=1

C2
i

+2α

(
max
�∈V

C�

)
m2θβτ max

x∈X
‖x‖

+2α2

(
max
�∈V

C�

) (
m∑

i=1

Ci

)(
mθβ

1 − β
+ 2

)
.

By using
∑m

i=1 C2
i ≤ max�∈V C�

∑m
i=1 Ci and a line of

argument similar to that in the proof of Theorem 3.4 of [2],
we can see that for all τ,

liminf
k→∞

f(yk) ≤ f∗ + m2θβτ max
x∈X

‖x‖max
�∈V

C�

+α max
�∈V

C�

 
mX

i=1

Ci

!„
5

2
+

mθβ

1− β

«
.

In the limit as τ → ∞, we obtain

liminf
k→∞

f(yk)

≤ f∗ + α max
�∈V

C�

(
m∑

i=1

Ci

)(
5
2

+
mθβ

1 − β

)
. (13)

From the subgradient inequality in (5) and the subgradient

boundedness we can see that for all j ∈ V ,

f(wj,k) − f(yk) ≤
(

m∑
i=1

Ci

)
‖yk − wj,k‖. (14)

The result follows from Lemma 2, and Eqs. (13) and (14).
Theorem 1 implies that for all j,

0 ≤ inf
k

f(wj,k)− f∗ ≤ αm

„
max
�∈V

C�

«2„
9

2
+

2mθβ

1− β

«
.

When the parameter η does not depend on the number m of

agents, the error term is of the order of m4. Note however,

that the error bound is for a general network topology. We

believe that the bound is not tight and expect to obtain better

bounds for special topologies such as spanning trees.

IV. CONCLUSION

We studied the performance of a distributed algorithm to

minimize the sum of convex functions, when each function

was known only to a specific network agent. We obtained an

error bound on the performance of the algorithm for a constant

stepsize. Our further interest is to investigate convergence

when diminishing and other stepsize rules are used.
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