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ABSTRACT

A Bayesian formulation of quickest change detection in multiple on-
off processes is obtained within a decision-theoretic framework. For
geometrically distributed busy and idle times, we show that the op-
timal joint design of channel switching and change detection has
a simple threshold structure under a mild condition. Extensions to
arbitrarily distributed busy and idle times, in particular, heavy tail
distributions, are discussed. We show that this problem presents a
fresh twist to the classic problem of quickest change detection that
considers only one stochastic process. We demonstrate that the key
to quickest change detection in multiple processes is to abandon the
current process when its state is unlikely to change in the near future
(as indicated by the measurements obtained so far) and seek oppor-
tunities in a new process to avoid realizations of long busy periods.
This problem arises in spectrum opportunity detection in cognitive
radio networks where a secondary user searches for idle channels in
the spectrum.

Index Terms— Quickest change detection, heavy tail distribu-
tion, spectrum opportunity detection, cognitive radio.

1. INTRODUCTION
The classic framework of quickest change detection dates back to
1931 [1]. In the conventional setting, the problem is to detect abrupt
changes in the distribution of a single stochastic process. Specif-
ically, it is assumed that the observations X1, X2, · · · , XT0−1 are
i.i.d. according to a distribution f0. After a random change point T0,
the observations XT0

, XT0+1, · · · , are i.i.d. according to a differ-
ent distribution f1. The objective is to detect the change point T0 as
quickly as possible subject to a reliability constraint, i.e., a constraint
on the probability of false alarm. The first optimal Bayesian change
detection algorithm was developed by Shiryaev in 1960’s [2], where
the change point is assumed to have a geometric/exponential distri-
bution. In the context of opportunity detection, this implies that the
connection time (channel “on” time) of the primary system is geo-
metrically/exponentially distributed. Generalizations of Shiryaev’s
algorithm to arbitrary prior distributions of the change point have
been studied (see, for example, [3, 4]).

In this paper, we formulate a new form of quickest detection by
considering a large number of independent on-off processes. The
objective is to catch as quickly as possible an idle/off period in any
of the stochastic processes. This problem arises in cognitive radio
systems for opportunistic spectrum access, where secondary users
need to quickly and reliably detect channels temporarily unused by
primary users in a spectrum consisting of multiple channels [5]. The
objective is to detect, as soon as possible, whether the sensed channel
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has become idle, in order to maximize the transmission time before
primary users reclaim the channel. The design constraint is on the
maximum probability of declaring a busy channel as idle in order to
limit the interference to primary users.

In our previous work [6], we developed a Bayesian formula-
tion of quickest change detection in multiple on-off processes within
a decision-theoretic framework. We demonstrated that the key to
quickest change detection in multiple processes is to abandon the
current process when its state is unlikely to change in the near future
(as indicated by the measurements obtained so far) and seek oppor-
tunities in a new process. The caveat here is the lost measurements
obtained in the abandoned process. Given that change detection re-
lies on the accumulation of “evidence” (measurements), the switch-
ing rule needs to be carefully chosen. An analogy is climbing the
corporate ladder: when a long-waited promotion has yet to come,
should one quit, abandon the established seniority, and look for a
greener pasture?

Built upon our previous work [6], this paper addresses the op-
timal joint design of channel switching and change detection. We
show that when the busy and idle times of the on-off processes obey
geometrical distributions, the optimal joint design of the switching
rule and the detection rule has a simple threshold structure under a
mild condition. The threshold structure is with respect to the a pos-
terior probability λt (given the whole observation history) that the
process currently being observed is idle at time t. Specifically, the
user should switch to a new channel when λt ∈ [0, ηs), should con-
tinue observing the current channel when λt ∈ [ηs, ηd), and should
declare that the current channel is idle when λt ∈ [ηd, 1], where
ηs and ηd are, respectively, the switching and detection thresholds.
Furthermore, we show that when the channel switching time is neg-
ligible, the optimal switching threshold ηs is the a prior probability
(before taking any measurements) that a channel is idle, i.e., the av-
erage fraction of time that a channel is idle. Extensions to arbitrarily
distributed busy and idle times, in particular, heavy tail distributions
are discussed. For heavy-tailed busy time, we show that the per-
sistency property of heavy tail distributions make it particularly im-
portant to adopt a channel switching strategy (rather than waiting
faithfully in a single channel) to avoid realizations of exceptionally
long busy periods. To our best knowledge, our previous work [6]
and this paper are the first that consider quickest change detection in
multiple stochastic processes.

2. QUICKEST DETECTION IN A SINGLE CHANNEL
In this section, we illustrate the problem of quickest opportunity de-
tection by first considering a single channel.

2.1. Problem Formulation
As shown in Fig. 1, suppose that sensing starts at t = 0, and the
channel becomes idle at a random time t = T0 unknown to the sec-
ondary user. The sensing measurements obtained before and after
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T0 thus have different distributions. Specifically, the sensing mea-
surements {X1, X2, · · · , XT0−1} before the change point T0 are
i.i.d. random variables with distribution f0(x), and the sensing mea-
surements {XT0

, XT0+1, · · · } after the change point T0 are i.i.d.
random variables with distribution f1(x). The time unit here is the
secondary user’s sampling period (the time for taking one channel
measurement).
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Fig. 1. Quickest detection of spectrum opportunities.

At each time instant t, the user aims to infer from measurements
{X1, X2, · · · , Xt} whether a change in the channel state has oc-
curred, i.e., whether to start transmitting or to continue monitoring
the channel and taking another measurement Xt+1.

Suppose that at time t = Td, the user is convinced that an oppor-
tunity has arisen and proceeds to transmit. The problem of quickest
opportunity detection can be formulated as choosing a stopping rule
Td under the following objective and constraint:

min E[(Td − T0)
+] subject to Pr[Td < T0] ≤ ζ, (1)

where (Td − T0)
+ Δ

= max{0, Td − T0}, and E[(Td − T0)
+] rep-

resents the expected detection delay. The constraint in (1) is on the
probability that the secondary user starts transmitting when the chan-
nel is still busy. It should be capped below an interference constraint
ζ. Clearly, the optimal stopping rule Td should strike a balance be-
tween detection delay and detection reliability. Note that in the clas-
sic setting, once the change occurs, the process will never change
back to distribution f0. In our formulation given in Sec. 3, we con-
sider on-off processes with alternating busy and idle periods, a more
realistic model of channel occupancy.

2.2. Shiryaev’s Algorithm for Quickest Change Detection
Shiryaev’s algorithm for quickest change detection was developed
within the Bayesian framework [2], where the change point T0 has a
known geometric distribution with parameter pB . Specifically,

Pr[T0 = k] = pB(1 − pB)k−1(1 − λ0), ∀k > 0,

where λ0
Δ
=Pr[T0 = 0] is the probability that the change occurs

before the observation starts (i.e., sensing starts during an idle period
of the channel in the context of opportunistic spectrum access).

It has been shown by Shiryaev that a sufficient statistic for quick-
est change detection for geometrically/exponentially distributed
change point is the a posterior probability λt that change has al-
ready occurred given the measurements obtained up to t (t > 0):

λt
Δ
=Pr[T0 ≤ t|X1, X2, · · · , Xt]. (2)

Based on Bayes’ rule, the sufficient statistic λt can be computed
recursively at each time t using the new observation Xt = x.

Shiryaev’s change detection algorithm is given by the following
stopping rule on the a posterior probability λt.

Td = inf{t : λt ≥ ηd}, (3)

where the detection threshold ηd is determined by the reliability con-
straint ζ given in (1). Obtaining the detection threshold ηd in a

closed-form is generally difficult. Setting ηd = 1 − ζ has been
shown to be asymptotically optimal as the reliability constraint be-
comes more strict (ζ → 0). In [3, 4], Shiryaev’s algorithm has been
shown to be asymptotically (ζ → 0) optimal when the change point
has an arbitrary prior distribution.

3. QUICKEST DETECTION IN MULTIPLE CHANNELS
In this section, we present the Bayesian formulation of quickest op-
portunity detection in multiple channels developed in [6]. We then
prove that the simple threshold policy proposed in [6] is, in fact, op-
timal for the joint design of channel switching and change detection.

3.1. A Bayesian Setup
We consider a spectrum consisting of a large number of homoge-
neous channels. In each channel, the channel usage of the primary
users is an on-off process with alternating busy and idle periods.
These on-off processes are stochastically independent and identical.
Let {Bi}

∞

i=−∞
and {Ii}

∞

i=−∞
denote, respectively, the lengths of

each busy and idle periods in a particular process. We assume that
the busy periods {Bi}

∞

i=−∞
have an identical geometric distribution

with parameter pB , and the idle periods {Ii}
∞

i=−∞
have an identical

geometric distribution with parameter pI . The average busy and idle
times are denoted by mB = 1/pB and mI = 1/pI , respectively.
Let λ0 denote the fraction of channel idle time. It is given by

λ0
Δ
=

mI

mB + mI

. (4)

A secondary user starts to sense a channel at t = 0. The ob-
jective is to catch an idle channel and start transmitting as quickly
as possible subject to an interference constraint that caps the prob-
ability of transmitting over a busy channel below ζ. The user may
switch to a different channel at any time. We assume that the number
of channels is large enough so that the user can always switch to a
channel that has not been visited. This is equivalent to the case that
switching back to a channel is allowed but measurements obtained
during previous visits to this channel are discarded. We also assume
that channel switching time is negligible. The decision-theoretic for-
mulation and the optimal policy can be easily extended to the general
case with positive channel switching time (see Sec. 3.3).

Let L be the number of channels visited by the user before it
declares, correctly or falsely, that an opportunity (an idle period) has
arisen. It is a random variable depending on the switching and de-
tection rules and the random observations in each channel. Let Ts(l)
(l = 1, · · · , L − 1) denote the time spent in the l-th channel before
switching to the (l +1)-th channel. Let Td(L) denote the time spent
in the last channel (the L-th channel) before declaring an opportu-
nity. The problem of quickest change detection in multiple channels
can be formulated as jointly choosing a sequence of switching rules
{Ts(l)}

L−1
l=1 and a detection rule Td(L) under the following objec-

tive and constraint:

min E[
PL−1

l=1 Ts(l) + Td(L)]

s.t. Pr[ZL(
PL−1

l=1 Ts(l) + Td(L)) = busy] ≤ ζ, (5)

where E[
PL−1

l=1 Ts(l)+Td(L)] represents the expected waiting time
before catching an idle channel, and ZL(t) denotes the state of chan-
nel L at time t.

We can see from (5) that quickest change detection in multiple
stochastic processes is fundamentally different from that in a sin-
gle process, and is significantly more difficult in that a sequence of
stopping rules (Ts(1), Ts(2), · · · , Ts(L− 1), Td(L)) need to be de-
signed.
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3.2. A Decision-Theoretic Formulation
In our previous work [6], the problem of quickest change detection
in multiple on-off processes is formulated as a partially observable
Markov decision process (POMDP) over a random horizon. Specif-
ically, the underlying system has three states: 0, 1, and Δ, where 0
and 1 indicate, respectively, that the current process is busy and idle,
Δ is an absorbing state, indicating the end of the decision horizon.
There are three actions at each decision time: S (switch and take a
measurement in a new process), C (continue taking measurements in
the current process), and D (declare that a change has already hap-
pened in the current process, i.e., the current process is idle). The
transition probabilities under each action are given in Fig. 2.

(Busy)
0

(Idle)

(Absorbing)
Δ

S/1 − λ0

C/1 − pB

D/1

S/λ0

C/pB
S/λ0

C/1 − pI

D/1

S/1 − λ0

C/pI

1

1

Fig. 2. The state transition diagram.

The observation at time t is Xt under actions S and C. The dis-
tribution of Xt is given by either f0(x) or f1(x) depending on the
current state Zt of the underlying system. Under action D, no ob-
servations are available. The actions of S and C have a unit cost
that measures the delay in catching an idle period. Declaring a busy
channel as idle incurs a cost of γ that models the tradeoff between
detection delay and detection reliability. It is set to satisfy the in-
terference constraint ζ given in (5). Note that it is not necessary to
specify the value of γ based on ζ. As shown in Sec. 3.3, the optimal
detection rule is specified by a detection threshold chosen to satisfy
the interference constraint ζ.

The objective is to choose actions sequentially in time to mini-
mize the expected total cost over an infinite horizon, or equivalently,
over a random horizon defined by the hitting time of the absorbing
state Δ. It is clear from the cost structure that the expected total cost
(excluding the potential cost of γ at the end of the decision horizon)
is the expected delay in catching an idle channel.

Since the underlying system state Zt is not directly observable
from the measurements {Xt}, what we have here is a POMDP. From
the fundamental theory of stochastic control, we know that a suf-
ficient statistic for choosing the optimal action at each time is the
information state or the belief value: the a posterior probability λt

that Zt = 1 (the current process is idle) given the measurements
obtained up to t. As discussed in the previous section, the same
statement was obtained by Shiryaev for quickest change detection in
a single process.

It is easy to see that λt has the following recursive update de-
pending on the action a(t − 1) and the observation X(t).

λt =

j
T (λ0|x) a(t − 1) = S, Xt = x
T (λt−1|x) a(t − 1) = C, Xt = x

, (6)

where T (λ|x) denotes the updated information state based on a new

measurement x. Let p̄
Δ
=1 − p for p ∈ [0, 1]. We have

T (λ|x)
Δ
=

(λp̄I + λ̄pB)f1(x)

(λp̄I + λ̄pB)f1(x) + (λpI + λ̄p̄B)f0(x)
. (7)

A channel switching and change detection policy π specifies a
function that maps an information state λt ∈ [0, 1] to an action
a(t) ∈ {S, C, D} for each time t. Quickest change detection in
multiple on-off processes can thus be formulated as the following
stochastic optimization problem:

π∗ = arg min
π

Eπ[
∞X

t=0

Rπ(λt)|λ0 =
mI

mB + mI

], (8)

where π(λt) is the action specified by policy π in information state
λt, and Rπ(λt) is the cost incurred under this action and can be easily
obtained from the cost structure by averaging over the two possible
values of Zt with λt.

3.3. The Optimal Policy: A Threshold Policy
Referred to as the value function, V (λt) denotes the minimum ex-
pected total remaining cost when the current information state is λt.
It specifies the performance of the optimal policy π∗ starting from
the information state λt. Let VS(λt) denote the expected total re-
maining cost when we take action S at the current time and then
follow the optimal policy π∗. Let VC(λt) and VD(λt) be similarly
defined. We thus have

V (λt) = min{VS(λt), VC(λt), VD(λt)}. (9)

From the cost structure, we obtain the following.

VS(λt) = 1 +

Z
x

P (x; λ0)V (T (λ0|x))dx,

VC(λt) = 1 +

Z
x

P (x; λt)V (T (λt|x))dx,

VD(λt) = (1 − λt)γ, (10)

where P (x; λ) = (λp̄I + λ̄pB)f1(x) + (λpI + λ̄p̄B)f0(x) is the
probability of observing x when the process has probability λ to be
idle. It is easy to see that VS(λt) = VC(λ0) and is independent of
λt. Furthermore, VD(λt) is linearly decreasing with λt (see Fig. 3).

Theorem 1 When pB + pI ≤ 1, the optimal joint design π∗ of
channel switching and change detection is given by two thresholds
ηs and ηd ∈ (ηs, 1]: switch to a new process whenever λt ≤ ηs,
continue in the current process whenever λt ∈ (ηs, ηd), and declare
whenever λt ≥ ηd. Furthermore, the optimal switching threshold
ηs = λ0

Δ
= mI

mB+mI

, the fraction of the idle time.

Proof: Omitted due to the space limit.
This simple threshold policy agrees with our intuition: switch to

a new channel when the prospect of catching an opportunity in a new
channel is better than staying in the current channel (i.e., λt ≤ λ0).
The condition of pB + pI ≤ 1 generally holds. For example, if the
average busy and idle times are more than two sample periods, the
condition is satisfied.

We point out that for the general case with an arbitrary channel
switching time τs, the threshold structure of the optimal policy still
holds. The only difference is that the optimal switching threshold ηs

is smaller than λ0 when τs > 0. This can be shown by noticing that
VS(λt) = τs + VC(λ0), i.e., the horizontal line in Fig. 3 is raised
up by τs and intersect with VC(λt) at a point smaller than λ0. It
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VC(λt)

Fig. 3. The threshold structure of the optimal policy.

is possible that when the channel switching time τs is sufficiently
large, the optimal policy is to never switch channels.

In Fig. 4, we compare the single-channel and multi-channel
strategies for different on-off processes. Specifically, we increase
both the average busy time mB and the average idle time mI while
keeping the fraction λ0 of idle time unchanged. In this case, we
observe that the average detection time of the single-channel strat-
egy increases linearly with mB , as suggested by our intuition. On
the other hand, the multi-channel strategy can maintain the same
small average detection time regardless of the increase in the length
of busy periods in every channel. The performance improvement is
thus dramatic when the average busy time is large. This is due to
the channel switching strategy that avoids large realizations of busy
time and fully exploits the presence of multiple channels.
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Fig. 4. Detection delay(λ0 = 0.7, ζ = 0.1, ηd = 1 − ζ).

4. EXTENSION TO ARBITRARY DISTRIBUTIONS

We now consider the case that the busy period B has an arbitrary dis-
tribution {gt}t>0. We are particularly interested in scenarios where
{gt}t>0 is a heavy tail distribution. A commonly used heavy tail
distribution is the Pareto distribution:

gt
Δ
= Pr[B = t] =

j
0 t < a
aα(t−α − (t + 1)−α) t ≥ a

,

where a > 0 is the minimum connection time. We consider α > 1
so that the connection time has a finite mean but potentially infinite
variance. It is easy to show that for a Pareto distributed connection
time B, ∀s > 0,

Pr[B > τ + s | O > τ ] ↗ 1 as τ → ∞.

This is the persistency property of heavy tail distributions. In other
words, for heavy-tailed connection time, a connection that has last
longer than a certain threshold is more likely to persist into the fu-
ture, and such exceptionally large realizations, albeit rare, dominate
the average behavior. This persistency property of heavy-tailed dis-
tribution makes it crucial to design an optimal channel switching rule
to avoid exceptionally long busy periods.

The threshold policy given in Theorem 1 can also be applied to
cases with arbitrarily distributed busy time. In this case, however, the
a posterior probability λt can no longer be computed recursively as
given in (6). Similar to [4], we can obtain a recursive implementation

by considering the likelihood ratio λ̂t defined similarly to the case
of quickest detection in a single process1. Specifically, we have

λ̂t =

8<
:

λ0

1−λ0
, t = 0

(
P c

t−1

P c
t

λ̂t−1 + pt

P c
t

) f1(Xt)
f0(Xt)

, t > 0
, (11)

where {pt}t>0 is the distribution of the residual busy time when
the user starts sensing a particular channel (after channel switching),
P c

t =
P

∞

k=t+1 pk is the complement cumulative distribution of the
residual busy time. Note that the distribution {pt}t>0 of the residual
busy time is different from {gt}t>0, since the time instant at which
the user starts sensing a particular channel is not synchronized with
the starting point of a busy period (see Fig. 1). The only exception is
when {gt}t>0 is a geometric distribution. Based on the distribution
of the so-called forward renewal time or the residual life of a renewal
interval, we have

pt =
1 − λ0

mB

∞X
l=t

gl, t > 0 (12)

For Pareto distributed busy time, we have

pt =

(
α−1
aα

(1 − λ0) 0 < t ≤ a

aα−1

α
((t − 1)−(α−1) − t−(α−1))(1 − λ0) t > a

,

which remains to be a heavy tail distribution with a tail index of α−1
(a heavier tail).

With the distribution {pt}t>0, the user can recursively update

the likelihood ratio λ̂t according to (11). The threshold channel
switching and change detection strategy given in Theorem 1 is equiv-

alent to a threshold policy on λ̂t: switch to a new process whenever

λ̂t ≤ η̂s, continue in the current process whenever λ̂t ∈ (η̂s, η̂d),

and declare whenever λ̂t ≥ η̂d, where the switching threshold η̂s =
λ0

1−λ0
, and the detection threshold can be set to η̂d = 1−ζ

ζ
.
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