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ABSTRACT

Decentralized dynamic spectrum allocation (DSA) that exploit adap-
tive antenna array interference mitigation (IM) diversity at the re-
ceiver, is proposed for interference-limited environments with high
level of frequency reuse. The system consists of base stations (BSs)
that may belong to different providers, who can optimize uplink fre-
quency allocation to their subscriber stations (SSs) to achieve the
least impact of IM on the useful signal, assuming no control over
band allocation of other BSs sharing the same bands. “Selfish” and
“good neighbor” decentralized DSA strategies are considered. Con-
vergence and convergence rate of the introduced techniques are in-
vestigated by means of the theory of absorbing Markov chains.

Index Terms— Decentralized dynamic spectrum allocation, in-
terference mitigation, “selfish” and “good neighbor” strategies, ab-
sorbing Markov chain.

1. INTRODUCTION

Dynamic spectrum or channel allocation can be an effective way
to increase spectral efficiency of wireless communications systems
[1]. In the license-exempt spectrum, channel allocation must be
performed by each provider in a decentralized autonomous way,
e.g., as currently considered for ad hoc [3] or WIMAX [2] networks.
In this case, DSA strategy is focused on maximal interference
avoidance. For example, in [2] a multichannel version of the carrier-
sense multiple-access collision-avoidance (CSMA/CA) algorithm
operates by selectively activating or deactivating groups of OFDM
sub-carriers separated by the guard bands.

In the most interesting scenario, where the total number of SSs
that belong to different closely located but not explicitly cooperating
subsystems exceeds the number of available bands, joint interference
avoidance/suppression may be required. One such system is ana-
lyzed in [3], where adaptive transmit/receive beamforming is consid-
ered for each ad hoc node pair. These node pairs communicate with
each other on a selected frequency basis, whereby the transmit beam-
former replicates the adaptive receive antenna beampattern. Clearly,
by reducing energy transmitted to directions occupied by the inter-
ferers, the self performance can be improved simultaneously with
reducing the interference load for the neighboring nodes. Global
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convergence of a decentralized DSA algorithm in such a reciprocal
environment, supported by game theory methodology, e.g., [4], can
be established. Global convergence of linear precoding algorithms
in non-cooperative resource sharing systems is studied in [5].

A more challenging scenario is considered in this paper with
no such reciprocity. The global convergence cannot be guaranteed
in this case. Instead, we propose a technique that significantly
reduces probability of undesirable non(slow)-convergent behavior.
Specifically, we consider DSA in the uplink interference-limited en-
vironment with a number of wireless systems consisting of multiple-
antenna BSs and associated single-antenna SSs. These systems may
belong to different providers and do not explicitly cooperate in a
centralized fashion. Frequency channels in this case can be formed
in an OFDM-based, e.g., WIMAX, system by an appropriate sub-
carrier allocation with guard bands for preventing energy leakage
between channels allocated to unsynchronized users [2] or in spec-
trally efficient filter bank based multicarrier (FBMC) systems by
using frequency selective filters for adjacent channels [6].

Since the number of available bands is less than the total number
of SSs, some of these SSs belonging to different subsystems have to
share the same frequency. We show that an IM-based DSA algorithm
at each subsystem should allocate bands to its users, such that the
propagation channels from the users to their BSs are as orthogonal as
possible to the active interference propagation channels. The main
problem here is that any decision made by a given BS regarding
frequency allocation of its users may have an arbitrary impact on
interference scenarios for other BSs, due to the non-reciprocal nature
of propagation channels from the SSs of a given subsystem to other
BSs. Therefore, in this non-reciprocal scenario, the performance,
convergence, and convergence rate of decentralized DSA is far from
obvious and must be investigated.

The two types of decentralized IM-based DSA techniques,
namely, the “selfish” and “good neighbor” ones, are introduced in
the paper. A Markov model is developed for the considered problem
and the theory of absorbing Markov chains is used for convergence
analysis.

2. SYSTEMMODEL AND PROBLEM FORMULATION

The considered system consists of N independent subsystems con-
taining base stations BSn, n = 1, . . . , N and corresponding users
SSnm,m = 1, . . . , M , whereM is the number users per BS. Users
transmit data to their BSs using one of the F ≥ M available fre-
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quency channels. BSs have full information and control of their
own users. In particular, they can estimate propagation channels in
all the available bands and prescribe the individual bands and trans-
mit powers to their own users. Assuming for simplicity narrowband
channels, the signal received by an antenna array of K elements for
the nth subsystem can be expressed as follows:

xnf (t) =

N�

l=1

M�

m=1

δfdlm
qlmhdlmmlnslm(t) + znf (t), (1)

where xnf (t) is the K × 1 vector of the signal received at BSn

in the f th band at the tth time instant, hfmln is the K × 1 vec-
tor of propagation channel to BSn in the f th band from the mth
user of the lth subsystem, snm(t) is the SSnm transmitted sig-
nal with E{|snm(t)|2} = 1 and q2

nm is its constrained power�M
m=1 q2

nm = M , n = 1, . . . , N , znf (t) is a K × 1 vector of
AWGN with E{znf (t)znf (t)∗} = σ2IK , dnm is the nmth element
of the N × M decision matrix D denoting the frequency band as-
signed to SSnm, E{·} is the averaging operator, (·)∗ is the conjugate
transpose operation, IK is the K × K unity matrix, and δij is the
Kronecker function.

In this study we assume an interference limited scenario σ2 �
1, different bands for all the users in one subsystem, i.e., all the rows
in matrixD contain different elements, and constant power qnm = 1
for all users in the system, i.e., locally selected frequency bands are
the only adjustable parameters. Power control in the IM-based DSA
is addressed in [7].

We define a global performance metric, which cannot be esti-
mated locally at each BSn, as the data rate for the weakest link in
the system

γ = min
m=1,...,M, n=1,...,N

log2 [1 + SINR(D)] , (2)

where SINR(D) = h∗
dnmmnnR−1

dnmnhdnmmnn is the SINR at the
output of the optimal spatial filter for the nmth user and

Rdnmn =

N�

i�=n

M�

j=1

δdnmdijhdijjinh∗
dijjin + σ2IK (3)

is the K × K interference covariance matrix at BSn in the band
occupied by SSnm.

In this paper, we concentrate on cognitive radio related issues,
rather than on non-stationary propagation channel, and a finite
amount of data effects. Thus, the propagation channels for all
users in all bands are assumed to be stationary and known at the
corresponding BS, e.g., BSn knows hfmnn for f = 1, . . . , F ,
m = 1, . . . , M , and n = 1, . . . , N .

Space-time spectrum sensing is required at each BSn to obtain
the interference covariance matrices (3) in all the available bands.
To do this, we assume that all users can transmit data signals or stay
silent during data and sensing intervals controlled by the BSs. Fur-
thermore, focusing on the cognitive radio effects, we assume that
the sensing intervals for different subsystems do not overlap and the
interference covariance matrices are estimated accurately during cor-
responding sensing intervals. A low probability of overlapping of the
sensing intervals can be achieved, for example, by means of random
duration of the data intervals.

The problem is to develop and analyze decentralized algorithms
for selection of the decision matrix D that with high probabil-
ity achieve reasonably fast convergence to acceptable steady-state
global performance (2).

3. IM-BASED DSA ALGORITHMS

A basic element of an IM-based DSA algorithm is a local search of
the band assignment. In the considered system, a natural “selfish”
search can be based on local maximization of the minimum SINR
independently for each BSn:

dn = arg max min
fi �=fj∈F

h∗
fmmnnR−1

fmnhfmmnn, (4)

whereRfn is defined in (6), dn = [dn1, . . . dnM ] is the 1×M vec-
tor of different elements representing the nth row of the global allo-
cation matrixD, and F = 1, . . . , F is the set of all available bands.
This algorithm will be referred to as maximum minimum (MaxMin)
search. If exhaustive local search in (4) is not feasible, simplified
algorithms can be applied as studied in [7].

The “selfish” algorithm can be summarized for the nth subsys-
tem as follows:

• Sensing interval
Step 1: EstimateRfn, f = 1, . . . , F ;
Step 2: Find dn according to (4) or simplified search algo-
rithms, and assign bands dn to SSnm;
Step 3: Calculate the optimal weight vectors

wnm =
R−1

dnmnhdnmmnn

h∗
dnmmnnR−1

dnmnhdnmmnn

, m = 1, . . . , M. (5)

• Data interval
SSnm,m = 1, . . . , M transmit data in the bands assigned in
dn;
BSn receives data with the optimal weight vectors wnm,
m = 1, . . . , M .

The main disadvantage of the “selfish” algorithm is that in pur-
suing the best results for its own BS, the interference environment
of other BSs keeps changing, leading to poor convergence for the
whole system. Furthermore, it does not allow any control of the con-
vergence properties, such as a trade-off between convergence prob-
ability and speed, and the global performance. To overcome these
drawbacks, we introduce a “good neighbor” threshold-regulated IM-
based DSA algorithm.

The main idea is to prevent selection of new bands at some BS
if its performance is already above some threshold γ0 and minimize
the number of new band allocations to achieve the given threshold.
It is expected that local minimization of the new band allocations
may reduce non-stationary interference to other subsystems and im-
prove convergence properties compared to the “selfish” approach.
Indeed, if only a few users have SINR below the threshold and ac-
tually need re-allocation to other bands, then application of the con-
ventional search algorithms as in (4) may still cause re-allocation of
many or even all the users, which creates a difficult non-stationary
environment.

The new search problem can be formulated as follows:

dn = arg min
fi �=fj∈F

M�

m=1

|sign(fm − d(0)
nm)|, (6)

subject to

log2
�
1 + h∗

fmmnnR−1
fmnhfmmnn

� ≥ γ0, (7)
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where d
(0)
nm is the mth element af the current band allocation vec-

tor d(0)
n before the current sensing interval for BSn and sign(a) =

{−1, 0, 1} is the sign function. Algorithm (6), (7) will be referred to
as minimum switch (MinSwitch) search.

It is worth emphasizing that a threshold-regulated approach also
can be implemented based on the MaxMin search, where the best
local bands can be reallocated only if some of the user’s SINRs fall
below the threshold. However, even in this case, the MaxMin search
may reallocate many or all the users even if only a few of them ac-
tually need that to satisfy the threshold. Thus, it is expected that
the MinSwitch search may show better convergence, especially for
high-dimension systems.

The threshold-regulated algorithm can be specified by adding
two more steps to the DSA algorithm above after Step 1 and modi-
fying Step 2:

• Sensing interval
Step 1a: Calculate

γn = log2

�
1 + min

m=1,...,M
h∗

d
(0)
nmmnn

R−1

d
(0)
nmn

h
d
(0)
nmmnn

�
;

(8)
Step 1b: If γn ≥ γ0, then go to the “Data interval” stage
without updating dn andwnm; otherwise, go to Step 2;
Step 2: Find dn according to (6), (7) or simplified local
search, then assign bands dn to SSnm.

4. USING ABSORBINGMARKOV CHAINS FOR
ANALYSIS OF THE IM-BASED DSA ALGORITHMS

Now, our goal is to analyze the performance of the decentralized
IM-based DSA algorithms for given stationary propagation chan-
nels. The theory of Markov chains, e.g., [8], provides us with a tool
to do this.

To formulate a Markov model we assume that all possible I =
(AF

M)N different allocation matricesDi, i = 1, . . . , I form states of
theMarkov chain. For a given stateDi, sensing of the nth subsystem
transfers the system to state Djn depending on the given channel
realization and DSA algorithm, where jn ∈ [1, I ], including jn = i.
Repeating this procedure for n = 1, . . . , N , a set of Djn can be
found, where not all jn may be different.

Assuming that, at each sensing interval, one randomly selected
subsystem is sensed with probability psens = N−1, the nonzero
elements of the I × I transition probability matrix P = {pij} can
be defined as follows:

pij = gjpsens, i = 1, . . . , I, (9)

where 1 ≤ gj ≤ N is the number of outcomes of sensing trials at
BSn, n = 1, . . . , N , leading toDjn = Dj . For example, if sensing
each of N subsystems leads to different states for the given initial
state, then all the corresponding states get equal probabilities psens.
If some of the sensing trials lead to the same outcome, then this state
gets increased probability according to (9).

The transition probability matrixP = {pij} is a sparse stochas-
tic matrix with maximum N nonzero elements in a row, such that�I

j=1 pij = 1 for i = 1, . . . , I , which completely defines the
Markov model of the considered system.

The Markov theory, e.g., [8], provides us with analytical expres-
sions for the convergence probabilities and speed for an absorbing

Markov chain, which has at least one absorbing point with transition
probability pii = 1 and all other states are transient with non-zero
probabilities to transit to one of the absorbing points not necessarily
in one step. One difficulty is that in the general case, the Markov
chain may contain ergodic subchains with states that can transit only
within corresponding subchains. Obviously, in the considered appli-
cation of Markov theory, situations with no absorbing states and/or
with ergodic subchains lead to a non-zero probability of undesirable
non-convergent behavior.

To apply the theory of absorbing Markov chains to our prob-
lem, we need the following: calculate a transition probability ma-
trix; classify all the states into three groups: transient, absorbing,
and ergodic, e.g., as in [9]; estimate the global performance for the
absorbing states; if ergodic subchains are found, then transform the
initial Markov chain to the reduced size absorbing Markov chain by
means of replacing the ergodic subchains with the corresponding ab-
sorbing states; calculate probabilities of absorption by the absorbing
states (desirable behavior) and ergodic subchains (undesirable non-
convergent behavior) and average convergence speed.

When all the states are classified, then the absorbing Markov
chain with the (It + Ia)× (It+ Ia) transient probability matrixPa
can be formed by replacing all the ergodic subchains, if they exist,
with absorbing states, where Ia ≥ 0 is the number of absorbing
states including the actual ones and the collapsed ergoding subchains
if they exist, It is the number of transient states, and It + Ia ≤ I .

For a given Pa, the probabilities of convergence to the corre-
sponding absorbing states can be found as follows [8]:

E = CB (10)

where E is the It × Ia matrix of convergence probabilities from
each transient state to each absorbing point, A and B are It × It
and It × Ia components of the canonical form P̄a of the transition
matrix

P̄a =

�
A B
0 I

�
, (11)

andC = (I − A)−1 is the It × It fundamental matrix of P̄a.
The average number of iterations (sensing intervals in our case)

before absorption is
t = C1, (12)

where t is the It×1 vector of the average number of iterations before
absorption from each initial transient state, and 1 is a It × 1 vector
of all ones.

Now, for the given system configuration and propagation chan-
nels, we can analyze the steady- state and convergence performance
of the algorithms presented in Section 3. Let us illustrate that for
M = 2, F = 3, N = 5, K = 4, σ2 = 10−2, and independent
random Gaussian vectors hfmln ∼ CW(0, IK) as stationary propa-
gation channels.

The probabilities pe of absorption by ergodic subchains (non-
convergence) from a randomly selected initial state averaged over
100 channel realizations are presented in Tabl. 1 together with prob-
abilities pna to find a chain with no absorbing points. The cumula-
tive distributed functions (CDF) of the number of absorption states,
convergence speed, and global performance for the absorption states
are presented in Fig. 1 for the “selfish” MaxMin-based algorithm
and the “good neighbor” threshold-regulated MinSwitch solution.

The following observations can be made:
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- The number of absorbing points grows significantly with intro-
duction of the threshold, compared to the “selfish” solution.

- The probability of non-convergence can be controlled by se-
lection of the threshold.

- The most important observation is that threshold selection al-
lows significant improvement of the convergence speed.

Similar results were obtained for the same system configuration
with K = 3 for a lower level of global performance. The main dif-
ference is that a much lower number of absorbing points and slower
convergence were observed in the K = 3 case compared with 4 BS
antennas for thresholds selected at the same relative distance from
the global performance. Fig. 2 presents a comparison of the number
of absorbing points and convergence speed for 3 and 4 BS anten-
nas for thresholds at 60% of the global performance shown in Figs.
3 and 4: 4 bits/symbol for K = 4 and 2 bits/symbol for K = 3.
One can see that for a similar relative performance, the K = 3 case
shows approximately 10 times fewer absorbing points and at least
twice longer convergence compared with the case of 4 BS antennas.
A possible explanation of this behavior is that if the number of an-
tennas is not enough to cancel all interference components, then the
number of good solutions should be much lower because they re-
quire a reduced dimension of the interference subspace additionally
to avoiding colinearity between propagation channels of the desired
signal and interference. This makes decentralized algorithms less
efficient compared to the case of complete interference suppression.
One can expect that this situation may be even more complicated for
higher dimension systems.

5. CONCLUSION

DSA techniques are addressed that operate in a non-reciprocal en-
vironment, where any changes in frequency allocation of a certain
subsystem introduces a non-stationary interference scenario for
other subsystems in the network. “Selfish” and “good neighbor”
threshold-regulated IM-based DSA strategies are introduced. Their
convergence and convergence rate are studied by means of the theory
of absorbing Markov chain for low-dimension system configuration.
Further investigation is given in [7], including power control and
simplified algorithms for higher-dimension systems.
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Tabl. 1. Probability of undesirable non-convergent behavior

Exhaustive No threshold 5 bits/symbol 4 bits/symbol
Search pna pe pna pe pna pe
MaxMin 2% 4.3% 0% 0.12% 0% 0.005%

MinSwitch - - 0% 0.08% 0% 0.002%
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