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Abstract — In this paper we study two-way relaying with
amplify-and-forward (AF) relays. In two-way relaying, two
terminals exchange data with the help of an intermediate relay
station. In order to enable mass deployment of these relays,
we focus on very simple AF relays that do not have any chan-
nel state information. Hence, to separate the data streams in
two-way relaying, both user terminals need reliable knowledge
of all relevant channel parameters. We therefore propose the
novel tensor-based channel estimation algorithm TENCE that
provides both terminals with full knowledge of all channel pa-
rameters involved in the transmission. The solution is algebraic,
i.e., it does not require any iterative procedures. Moreover,
TENCE is applicable to arbitrary antenna configurations. We
also derive criteria for the design of the pilot symbols and the
corresponding relay amplification matrices. Computer simula-
tions demonstrate the achievable channel estimation accuracy.

Index Terms— Two-way Relaying, MIMO communication,
Multidimensional signal processing, Channel estimation

1. INTRODUCTION
A promising approach to enhance coverage, availability, and reli-
ability of future mobile communication systems is the deployment
of relay stations to support the transmission between mobile termi-
nals. These relay stations should be much smaller and simpler than
base stations so that they can be deployed in larger quantities without
causing a prohibitive increase in network cost.

In this paper we focus our attention on amplify-and-forward
(AF) relays, where the relays limit their interaction to amplifying the
received signal and transmitting the amplified signal in the next time
slot. In contrast to decode-and-forward (DF) relays the hardware re-
quirements are much lower which enables the production of cheap
mass market devices. To lower the relay complexity even further we
assume that the relay station (RS) does not have any channel state
information (CSI) and therefore its amplification is independent of
the current channel state.

We apply these relays to scenarios where two user terminals
(UTs) would like to exchange data with the help of a RS. Their com-
munication is achieved via a two-way relaying scheme [6], i.e., both
UTs transmit to the RS in the first time slot and receive the amplified
signal from the RS in the second time slot as depicted in Figure 1.

Two-way relaying has been studied in many previous publica-
tions. However, usually the relay station was assumed to aid in the
separation of the two data streams, either by choosing DF relays [5]
or by exploiting CSI at the RS [7, 3], e.g., via multi-user beamform-
ing to achieve a spatial separation. Since we focus on AF relays
without CSI, the separation of the streams must be performed at the
terminals. Consequently, the UTs need reliable channel knowledge

about all relevant channel parameters.
A channel estimation algorithm for AF relaying scenarios was,

for example, proposed in [4]. However [4] considered single-
antenna relays and a uni-directional link from a transmitter to a
receiver. We propose the novel tensor-based channel estimation
scheme TENCE for two-way relaying with AF relays which can be
applied to arbitrary antenna configurations. TENCE provides both
terminals with the necessary channel knowledge to separate the data
streams and to decode the transmission from the other user terminal.
The solution is algebraic, i.e., it does not require any iterative proce-
dures. We also obtain criteria for the design of the training data and
the corresponding relay amplification matrices to optimize the esti-
mation accuracy. Computer simulations demonstrate the achievable
channel estimation accuracy of TENCE.

2. NOTATION

To distinguish between scalars, vectors, matrices, and tensors, the
following notation is used: Scalars are denoted as italic letters
(a, b, A,B), vectors as lower-case bold-faced letters (a, b), matrices
are represented by upper-case bold-faced letters (A,B), and tensors
are written as bold-faced calligraphic letters (A, B).

The superscripts T,H ,−1 ,+ represent (matrix) transposition,
Hermitian transposition, matrix inverse, and the Moore-Penrose
pseudo inverse, respectively. Moreover, ∗ denotes the complex con-
jugate operator. The Kronecker product between two matrices A
and B is symbolized by A ⊗ B and the Khatri-Rao (columnwise
Kronecker) product byA �B. Moreover, the Schur productA�B

and the inverse Schur product A � B represent the elementwise
multiplication and division of the matricesA and B, respectively.

A 3-dimensional tensor A ∈ C
M1×M2×M3 is a 3-way ar-

ray with size Mr along mode r. The r-mode vectors of A are
obtained by varying the r-th index and keeping all other indices
fixed. Collecting all r-mode vectors into a matrix, we obtain
the so called r-mode unfolding of A which is represented by
[A](r) ∈ C

Mr×(M1·M2·M3)/Mr . The ordering of the columns
in [A](r) is chosen in accordance with [1]. The r-rank of A is
defined as the (matrix) rank of [A](r). Note that in general, all the
r-ranks of one tensor can be different.

The r-mode product between a tensor A ∈ C
M1×M2×M3 and

a matrix Ur ∈ C
Pr×Mr is symbolized by B = A ×r Ur . It is

computed by multiplying all r-mode vectors from the left-hand side
by the matrix Ur , i.e., [B](r) = Ur · [A](r).

To represent the concatenation of two tensors A and B along
the n-th mode we use the operator [A nB]. The matrices 0p×q ,
1p×q, and Ip symbolize the zero matrix of size p× q, a p× q matrix
of ones, and the p × p identity matrix, respectively. The tensor I3,p

is the p×p×p 3-dimensional identity tensor which is one if all three
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Fig. 1. Two-way relaying system model.

indices are equal and zero otherwise.
The rank of a tensor A ∈ C

M1×M2×M3 is defined as the min-
imum number of rank one tensors we need to sum to construct A,
where a rank one tensor can be expressed as the outer product of non-
zero vectors. If the rank ofA is equal to r we can expressA in terms
of its PARAFAC decomposition [2] asA = I3,r×1F1×2F2×3F3,
where F1 ∈ C

M1×r , F2 ∈ C
M2×r, and F3 ∈ C

M3×r . Note that
the tensor rank satisfies rank{A} ≥ rank{[A](r)} for r = 1, 2, 3.

3. SYSTEM DESCRIPTION
3.1. Two-way A/F relaying
The scenario under investigation is depicted in Figure 1. We con-
sider the communication between two user terminals UT1 and UT2

with the help of an intermediate relay station R. The terminals UT1

and UT2 are equipped withM1 andM2 antennas, respectively. The
number of antennas at the relay station is denoted by MR. The ter-
minals and the relay station are assumed to operate in a half-duplex
mode, i.e., they cannot transmit and receive at the same time.

To save the scarce time and frequency resources only two trans-
mission phases are used in two-way relaying. In the first time slot,
both user terminals transmit their data to the relay, where the trans-
missions interfere. The relay amplifies the received signal and sends
it back to both user terminals in the second time slot. Note that we
assume time division duplex (TDD).

In contrast to previous studies that have investigated two-way re-
laying with DF relays [7], we consider very simple AF relays with-
out CSI. The relay amplification matrices are designed beforehand
and therefore known to the relay and the user terminals. The task
of estimating the individual transmissions from the received signals
is shifted completely to the user terminals. To separate the data
streams, the user terminals should have very good knowledge of the
channel matrices.
3.2. Data model
In the first transmission phase, the terminals transmit data to the relay
station. Assuming frequency-flat fading, the signal received at the
relay can be expressed as

r = H1 · x1 + H2 · x2 + nR ∈ C
MR , (1)

where x1 ∈ C
M1 and x2 ∈ C

M2 are the transmitted vectors from
UT1 and UT2, the matrices H1 ∈ C

MR×M1 and H2 ∈ C
MR×M2

represent the MIMO channels between the relay and UT1 and UT2,
and the vector nR represents the additive noise vector at the relay
station.

In the second time slot, the relay amplifies the received vector
with an amplification matrix G ∈ C

MR×MR and transmits the sig-
nal to both terminals. Consequently in the second slot the received
vectors at the two terminals can be expressed as

y1 = HT
1 · G · (H1 · x1 + H2 · x2 + nR) + n1

y2 = HT
2 · G · (H1 · x1 + H2 · x2 + nR) + n2, (2)

where we have assumed that reciprocity holds in our TDD system
and that the channels have not changed between the two transmission
phases. The vectors n1 and n2 in (2) represent the thermal noise at
the receivers. Note that (2) can be rewritten in the following form

y1 = HT
1 · G · H1 · x1 + HT

1 · G · H2 · x2 + ñ1

y2 = HT
2 · G · H1 · x1 + HT

2 · G · H2 · x2 + ñ2. (3)

If the user terminals possess knowledge of the channel matricesH1

andH2 they can cancel the interference they receive from their own
transmissions and then decode the transmissions of the other user
terminal. Therefore we now focus on the acquisition of channel state
information at the terminals.

3.3. Training
In order to acquire channel knowledge at the user terminals we
require a training phase which consists of MR frames. In each
frame, a fixed relay amplification matrix G(i) ∈ C

MR×MR , i =
1, 2, . . . , MR is used to transmit a known sequence of NP pilot
symbols x1,j ∈ C

M1 and x2,j ∈ C
M2 for j = 1, 2, . . . , NP from

UT1 and UT2, respectively. The number of pilot symbols NP that
are transmitted for each G(i) must satisfy NP ≥ (M1 + M2).
Therefore, the total number of time slots for the training is given by
MR · NP ≥ MR · (M1 + M2). Note that the number of parameters
we identify is equal toMR ·M1 + MR ·M2 and thus the number of
required time slots is equal to the number of parameters.

The received signal from the j-th pilot symbol within the i-th
training block is given by

y1,i,j = HT
1 · G(i) · H1 · x1,j + HT

1 · G(i) · H2 · x2,j + ñ1,i,j

y2,i,j = HT
2 · G(i) · H1 · x1,j + HT

2 · G(i) · H2 · x2,j + ñ2,i,j .

This data model can be expressed in a more compact form using
tensor notation. To this end, let us introduce the following definitions

H
.
= [H1, H2] ∈ C

MR×(M1+M2) (4)

X
.
=

�
X1

X2

�
=

�
x1,1 . . . x1,NP

x2,1 . . . x2,NP

�
∈ C

(M1+M2)×NP (5)

G
.
=

�
G(1)

3G(2) . . . 3G(MR)
�
∈ C

MR×MR×MR . (6)

Using these definitions, the received training data can be rewritten as

Y1 = G ×1 HT
1 ×2 (H · X)T + N1 ∈ C

M1×NP×MR

Y2 = G ×1 HT
2 ×2 (H · X)T + N2 ∈ C

M2×NP×MR , (7)

where the tensors Y1 and Y2 contain the vectors y1,i,j and y2,i,j

in such a way that the second index in the tensor represents j =
1, 2, . . . , NP and the third index represents i = 1, 2, . . . , MR. Sim-
ilarly, the tensors N 1 and N 2 represent the collection of the noise
vectors ñ1,i,j and ñ2,i,j , respectively. Note that the structure of (7)
is similar to a Tucker-2 decomposition [2] with a known core tensor
G and some form of symmetry in the factors (H1 andH2 appear in
the first and in the second factor).

4. CHANNEL ESTIMATION
In this section we derive an algebraic solution for the channel esti-
mation problem, i.e., an algorithm that computes estimates of HT

1

andHT
2 from the received training data. For notational convenience

we ignore the contribution of the noise and write equalities. In the
presence of noise, the following identities only hold approximately.
Also, we derive the solution for UT1 only. Due to the symmetry of
the problem the solution for UT2 is very similar.

First of all, consider the training tensor G . Since G can be de-
signed, we choose a tensor with rank MR. Therefore G can be ex-
pressed in terms of its PARAFAC decomposition

G = I3,MR
×1 G1 ×2 G2 ×3 G3, (8)
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where I3,MR
is the identity tensor of sizeMR ×MR ×MR and the

matrices G1, G2, G3 ∈ C
MR×MR represent the factor matrices of

the decomposition. Instead of designing the tensor G directly, it is
much easier to deduce design rules for the matricesG1,G2, andG3

from the derivation of the channel estimation algorithm. Inserting (8)
into (7) yields

Y1 = IMR
×1

�
HT

1 · G1

�
×2

�
XT · HT · G2

�
×3 G3

[Y1](3) = G3 ·
��

HT
1 · G1

�
�
�
XT · HT · G2

��T
, (9)

where we have used elementary properties of n-mode products. In
order to isolate the Khatri-Rao product, the multiplication with G3

must be inverted. Since we can design G3, we choose this matrix
such that it is orthogolal, i.e.,GH

3 G3 is a scaled identity. This guar-
antees that the inversion step is well conditioned, which is favorable
from a numerical standpoint. We now isolate the Khatri-Rao product
in (9) in the following way

�
G−1

3 · [Y1](3)

�T
=
�
HT

1 · G1

�
�
�
XT · HT · G2

�
, (10)

whereG−1
3 is just a scaled version ofGH

3 , sinceG3 is orthogonal.
The Khatri-Rao product in (10) can be inverted up to one scal-

ing ambiguity per column. That means we can find matrices F1 ∈
C

M1×MR and F2 ∈ C
NP×MR such that

F1 = HT
1 · G1 · Λ (11)

F2 = XT · HT · G2 · Λ−1, (12)

where Λ = diag {λ}, λ = [λ1, λ2, . . . , λMR
], and λn represent

arbitrary complex numbers. Since in the presence of noise (10) is
only approximately a Khatri-Rao product, an approximate factoriza-
tion has to be computed according to the following steps: Let Γ be
the left-hand side of (10), such that Γ ≈ F1 � F2. This implies
γm ≈ f1,m ⊗ f2,m for the m-th column vectors of Γ, F1, and
F2, respectively. We can reshape γm into a matrix Γ̃m ∈ C

NP×M1

such that Γ̃m ≈ f2,m · fT
1,m. Next, we compute the singular value

decomposition of Γ̃m as Γ̃m = UmΣmV H
m . Now the best rank-

one approximation of Γ̃m in the Frobenius norm is obtained by
choosing f1,m and f2,m according to f̂1,m =

√
σ1 · v∗1,m and

f̂2,m =
√

σ1 ·u1,m, where u1,m and v1,m represent the first column
ofUm and Vm, respectively, and σ1 is the largest singular value. We
repeat this process for all m = 1, 2, . . . , MR. Note that for every
m there is one scaling ambiguity in inverting the outer product since
f2,m · fT

1,m = (λm · f2,m) · (f1,m/λm)T , ∀λm ∈ C.
In order to resolve the unknown parameters λm we need to elim-

inate the unknown channels in (11) and (12). First of all, H2 can
easily be eliminated in (12) by designing the pilot matrixX in such
a way that it has orthogonal rows. In our simulations, we have cho-
senX as the firstM1 +M2 rows of a DFT matrix of sizeNP ×NP,
scaled in such a way that the pilot transmit power constraint is sat-
isfied. Note that from the orthogonality of the DFT matrix it also
follows that the pilot transmissions of the two users are mutually
orthogonal. Therefore

�
XT

1

�+
· XT =

�
IM1

, 0M1×M2

�
�
XT

2

�+
· XT =

�
0M2×M1

, IM2

�
. (13)

Also note that due to the orthogonality constraint of X ,
�
XT

1

�+

and
�
XT

2

�+ are scaled versions ofX∗

1 andX∗

2 , respectively. Using
equation (13) in (12) we can eliminateH2 in the following fashion

F̃2
.
=
�
XT

1

�+
· F2 = HT

1 · G2 · Λ−1

⇒F̃2 · Λ · G−1
2 = HT

1 . (14)

Note that G2 has to be inverted. Therefore, G2 is also chosen to be
orthogonal so that G−1

2 is a scaled version of GH
2 . Inserting (14)

into (11) yields

F1 = F̃2 · Λ · G−1
2 · G1 · Λ (15)

F1 = F̃2 ·
��

G−1
2 · G1

�
�
�
λ · λT

��
, (16)

where in the last step we have used the fact that Λ is diagonal. In
order to solve (16) for the unknown vector λ we would like to isolate
λ · λT on one side of the equation. However, in order to do so, we
need to move F̃2 to the other side. Since F̃2 is of size M1 × MR

this step requires M1 ≥ MR. From the equivalent equation at the
other user terminal we also get the condition M2 ≥ MR. As a
consequence we now consider two cases separately. First of all, we
solve the case where both conditions are met, i.e.,min {M1, M2} ≥
MR. Then we consider the case where this condition is not satisfied.

Case 1: min {M1, M2} ≥ MR.
In this case, we can solve (16) for λ · λT in the following fashion

F̃+
2 · F1 =

�
G−1

2 · G1

�
�
�
λ · λT

�
�
F̃+

2 · F1

�
�
�
G−1

2 · G1

�
= λ · λT. (17)

Here we apply the inverse Schur product � (i.e., element-wise di-
vision), which requires that the matrix G−1

2 · G1 does not contain
any zero entries. This represents another rule for the design of the
factors.

In the presence of noise, (17) holds only approximately. There-
fore, the matrix estimated from the training data does not necessarily
have rank one. The best approximation for λ is obtained in the fol-
lowing fashion: Let L be the left-hand side of (17), such that L ≈
λ ·λT. Then we can symmetrize L by defining L̃ =

�
L + LT

�
/2.

An SVD of L̃ is then given by L̃ = UΣUT. Consequently, the
least squares estimate for λ is obtained from λ̂ =

√
σ1 · u1, where

u1 is the first column of U and σ1 is the largest singular value.
Note that the estimation of λ involves one sign ambiguity since

(−λ) · (−λ)T = λ ·λT. From the estimated λ̂ we finally obtain es-
timates for the channel matrices up to a single sign ambiguity (which
is irrelevant since it is eliminated in (2)) in the following fashion

Ĥ1 =
�
F1 · diag

�
λ̂
�
−1

· G−1
1

�T
(18)

Ĥ2 =
��

XT
2

�+
F2 · diag

�
λ̂
�
· G−1

2

�T
. (19)

It is also possible to obtain a second estimate for H1 from F2 by
replacingX2 byX1 in (19). However, the estimate found from (18)
is always more accurate. Note that (18) involves the inverse of G1.
With the same reasoning as before we therefore choose G1 to be a
orthogonal matrix.

Case 2: min {M1, M2} < MR

Without loss of generality, we consider the case where M1 ≤ M2.
Since F̃2 in (16) is a “flat” matrix, we cannot solve (16) for the
unknown matrix λ ·λT directly. Essentially, there are onlyM1 ·MR

equations forM2
R unknowns. However, it is actually not required to

estimate all elements in λ ·λT, because this matrix has rank one and
hence does not haveM2

R degrees of freedom.
Therefore, the approach we take to solve this case is to reduce

the number of variables we estimate by placing zeros in the matrix
G̃ = G−1

2 · G1 and then only estimating the variables at the non-
zero positions of G̃. This results in an incomplete estimate of the
rank-one matrix λλT, which is then completed by exploiting the
rank-one structure this matrix should possess.

In order to facilitate a well-defined inversion we can design the
matrix G̃ such that each of its column vectors g̃m contains at most
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Fig. 2. Median of the relative channel estimation error vs. SNR forM1 = 4,
M2 = 4, andMR = 2.

min {M1, M2} non-zero entries for m = 1, 2, . . . , MR. To esti-
mate λ we first compute L̊ =

�̊
l1, . . . , l̊MR

�
, where

l̊m =
�
F̃2 · diag {g̃m}

�+
· f1,m, (20)

and f1,m represents them-th column of F1 form = 1, 2, . . . , MR.
Note that L̊ contains estimates of the matrix λλT at the nonzero po-
sitions of G̃ and zeros elsewhere. Let us call the elements of L̊ at
the nonzero positions in G̃ “known elements” and the zero positions
“unknown”. To fill the unknown elements in L̊ we proceed in the
following manner: let l̊i,j be the (i, j) element of L̊. Then we can
set l̊j,i = l̊i,j if (i, j) is known and (j, i) is unknown, exploiting the
symmetry of the rank-one matrix. In a second step we can estimate
the ratios ρm = λm/λm−1 form = 2, 3, . . . , MR as the arithmetic
average of the ratios l̊m,i/̊lm−1,i for all i for which the elements
(m, i) and (m− 1, i) are known and the ratios l̊j,m/̊lj,m−1 for all j
for which the elements (j, m) and (j, m − 1) are known. With the
help of the ratios ρm, estimates for all remaining unknown elements
(i, j) of L̊ are obtained by multiplying known elements in the pre-
vious row or column with ρi and by dividing known elements in the
subsequent row or column by ρi+1.

At the end of this procedure we have an estimate of λ ·λT. De-
pending on the pattern of unknown elements this estimate may not
be exactly symmetric and it may also not have exactly rank one. We
therefore proceed in the same manner as in the first case to estimate
the vector λ from this matrix: First the matrix is symmetrized and
then a best rank-one approximation is computed with the help of a
singular value decomposition. The estimated vector λ̂ is then used
to compute estimates for the channel matricesH1 andH2 (cf. equa-
tions (18) and (19)).

5. SIMULATION RESULTS
Next, we demonstrate the achievable accuracy of the TENCE algo-
rithm. We consider Rayleigh fading channels without spatial corre-
lation and for simplicity we set the path loss to 1 (0 dB). We display
the median of the relative squared estimation error which is defined
as

rMSE = min
p=−1,1

��H1 − p · Ĥ1

��2

F

‖H1‖
2
F

, (21)

for H1 and similarly for H2. Here, the scalar quantity p is intro-
duced to take into account the remaining sign ambiguity in the esti-
mation. Four curves depict the estimation accuracy of H1 and H2

at user terminal 1 and 2, respectively.
For the simulation result depicted in Figure 2 both user terminals

are equipped with 4 antennas the the relay with 2 antennas. Conse-
quently, this corresponds to case 1 in Section 4. For the pilot symbol
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Fig. 3. Median of the relative channel estimation error vs. SNR forM1 = 3,
M2 = 3, andMR = 6.

matrix X , an 8 × 8 DFT matrix is used and the factor matrices of
the tensor G are chosen as G1 = I2, G2 = D2, G3 = D2, where
D2 represents a 2 × 2 DFT matrix.

On the other hand, in Figure 3 we study a scenario where the
case 2 of the algorithm is used since the number of relay antennas is
set to 6 and the terminals both have 3 antennas. This time,X is a 6×
6 DFT matrix and the factors of the tensor G are computed through
G1 = I6, G2 = D6 � S6,3, G3 = D6. Here, D6 represents a
6 × 6 DFT matrix and the matrix S6,3 is given by

S6,3 =

�
�

1 0 0 0 1 1
1 1 0 0 0 1
1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1

�
	

. (22)

Both simulations show that each terminal can estimate its own chan-
nel to the relay with a higher accuracy than the channel between the
other terminal and the relay.

6. CONCLUSIONS
In this paper we propose the novel tensor-based channel estimation
algorithm TENCE for two-way relaying systems with amplify-and-
forward relays. In contrast to previous approaches, we do not assume
any CSI at the relay, since the terminals can cancel their own self
interference without the help of the relay provided that they have
reliable channel state information.

TENCE provides both terminals with full knowledge of all chan-
nel parameters relevant for the transmission. It is applicable to ar-
bitrary antenna configurations. Moreover it is very fast since the
algebraic solution does not require any iterative procedures.

We also obtain design rules for the relay amplification matri-
ces and the pilot symbols in order to achieve the best estimation
accuracy. Computer simulations demonstrate the performance of
TENCE.
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