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ABSTRACT

In this paper we analyze the structure of certain power-
constrained utility sets, based on the axiomatic framework
of log-convex interference functions. Log-convex interference
functions contain convex and linear interference functions as a
special case. We analyze the boundary of the set. It is shown
how Pareto optimality of boundary points depends on the
interference coupling between the users. Finally, we investi-
gate feasible sets of signal-to-interference-plus-noise ratios for
individual power constraints and a sum power constraint. We
show certain properties that are desirable, e.g. in the context
of cooperative game theory.
Index Terms— resource allocation, interference functions, SIR fea-

sible set, game theory, Nash bargaining

1 INTRODUCTION
Performance tradeoffs in multiuser systems occur when users

share a common resource or if they are coupled by mutual inter-
ference. This is typical for wireless systems, and also for certain
wireline connections, e.g. twisted-pair copper wires used for DSL
transmission. The achievable performances are commonly charac-
terized by the utility set, sometimes referred to as utility region or
quality-of-service (QoS) region. The utility region U is defined as
the set of all achievable utility vectors u = [u1, . . . , uK ]T , where
K ≥ 2 is the number of users.
Many resource allocation strategies crucially depend on the

structure of the set U , so a thorough understanding of its boundary
is needed. Some often-made assumptions are comprehensiveness,
convexity, and Pareto optimality. These properties are often implic-
itly assumed (see e.g. [1]). Comprehensiveness can be interpreted
as free disposability of utility. Convexity allows the application of
well-known concepts from optimization and game theory. Pareto
optimality of the boundary means that no resources are wasted.
For interference-coupled wireless systems, the set U can largely

depend on the physical layer. Thus, convexity and Pareto optimality
need not be fulfilled. Examples are interference mitigation and
avoidance strategies, which can have a large impact on the structure
of the resulting utility set. Although some particular utility sets are
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well-understood, there is no general theory for analyzing utility
tradeoffs caused by multiuser interference.
This paper builds on previous results [2], [3], where the structure

of log-convex interference functions and resulting utility sets was
analyzed. The contributions of this paper are:

• In Section 2 we study the boundary of the region of signal-to-
interference-plus-noise ratios (SINR). We assume log-convex
interference functions and power constraints. A necessary and
sufficient condition for Pareto optimality is derived. These
results automatically extend to arbitrary utility sets resulting
from monotone mappings of the SINR. Examples include
capacity, bit error rate, minimum mean square error, etc.

• In Section 3 we show that the SINR sets from Section 2 have
certain convexity properties which are desirable in the context
of cooperative game theory. One motivation for this analysis is
Nash’s bargaining theory [1], which can be extended to certain
log-convex utility sets [3].

Some notational conventions are: Matrices and vectors are de-
noted by bold capital letters and bold lowercase letters, respectively.
Let y be a vector, then yl = [y]l is the lth component. The
notation y ≥ 0 means that yl ≥ 0 for all components l. x � y

means component-wise inequality with strict inequality for at least
one component. Similar definitions hold for the reverse directions.
Finally, x �= y means that the vector differ in at least one
component. The set of non-negative reals is denoted as R+. The
set of positive reals is denoted as R++.

2 INTERFERENCE-COUPLED WIRELESS SYSTEMS BASED ON
LOG-CONVEX INTERFERENCE FUNCTION

In this section we study the SINR region resulting from log-
convex interference functions and power constraints. It will be
shown how Pareto optimality of boundaries points depends on the
interference coupling between the users.

2.1 Interference Functions

Consider K users, with transmit powers p = [p1, . . . , pK ]T .
The noise power at each receiver is σ2

n. Hence, the SINR at each
receiver depends on the extended power vector

p =
ˆ p

σ
2

n

˜
= [p1, . . . , pK , σ2

n]T . (1)
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The resulting SINR of user k is SINRk(p) = pk/Ik(p), where
Ik is the interference (plus noise) as a function of p. We use the
axiomatic framework proposed in [4].

Definition 1. We say that I : RK+1
+ �→ R+ is an interference

function if the following axioms are fulfilled:

A1 (conditional positivity) I(p) > 0 if p > 0

A2 (scale invariance) I(αp) = αI(p) for all α > 0

A3 (monotonicity) I(p) ≥ I(p′) if p ≥ p′

A4 (strict monotonicity) I(p) > I(p′) if p ≥ p′

and p
K+1

> p′

K+1

A simple example is I(p) = vT p + σ2
n, where v ∈ RK

+ is a
vector of interference coupling coefficients. It was shown in [5]
that the axiomatic framework A1–A4 is closely connected with the
framework of standard interference functions [6]. For any constant
noise power p

K+1
= σ2

n, the function Y (p) = I(p) is standard.
Conversely, any standard interference function can be expressed
within the framework A1–A4.

2.2 The SINR Region Under Power Constraints
Consider the SINR feasible region for users K = {1, 2, . . . , K},

with individual power constraints p ≤ pmax = [pmax
1 , . . . , pmax

K ]T ,
which is defined as the sub-level set

S(I , pmax) = {γ ∈ RK

++ : C(γ, I , pmax) ≤ 1} (2)

where I = [I1, . . . , IK ]T and γ is a vector of SINR values, whose
feasibility is determined by the min-max optimum

C(γ, I , pmax) = inf
0<p≤pmax

“
max
k∈K

γkIk(p)

pk

”
. (3)

The structure of the SINR set S(I , pmax) depends on the properties
of the indicator function C(γ, I , pmax), which in turn depends on
the properties of the underlying interference functions I1, . . . , IK ,
as well as on the chosen power constraints pmax.
Sub-level sets of convex functions are convex, thus S(I , pmax)

is a closed convex set from RK
+ if C(γ, I , pmax) is convex (see

e.g. [7]). However, convexity of C(γ, I , pmax) does generally not
hold, so SINR regions are typically non-convex.
The SINR region under a sum power constraint is defined as

S(I , Ptot) = {γ ∈ RK

++ : C(γ, I , Ptot) ≤ 1} (4)

where C(γ, I , Ptot) = inf
p>0;‖p‖1≤Ptot

“
max
k∈K

γkIk(p)

pk

”
.

2.3 Log-Convex Interference Functions
Having introduced general interference functions in Section 2.1,

we will now discuss the important sub-class of log-convex inter-
ference functions. Throughout this paper, all interference functions
are assumed to be log-convex.
For explanation, consider the function f(s) := I(exp{s}),

which is said to be log-convex on RK+1 if log f is convex, or
equivalently

f
`
(1−λ)ŝ+λš

´
≤ f(ŝ)1−λf(š)λ, ∀λ ∈ (0, 1), ŝ, š ∈ RK+1 .

Definition 2. We say that the interference function I is a log-
convex interference function if I(exp{s}) is log-convex on RK+1.

Note, that the log-convexity in Definition 2 is based on a change
of variable p = exp{s} (component-wise exponential). Such a

technique was already used by Sung [8] in the context of linear
interference functions, and later in [9], [10].

2.4 Characterization of the Boundary for Individual Power
Constraints
Consider log-convex interference functions and individual power

limits pmax. Let γ > 0 be an arbitrary boundary point of the
resulting region S(I , pmax). The set of all power vectors achieving
γ is

P(γ, pmax) = {0 ≤ p ≤ p
max : pk ≥ γkIk(p)} . (5)

For the following analysis, it is important to note that the set
P(γ, pmax) can contain multiple elements. This is most easily
explained by an example:

Example 1. Consider a 2-user Gaussian multiple access channel
(MAC) with successive interference cancellation, normalized noise
σ2

n = 1, and a given decoding order 1, 2. The SINR of the users
are

SINR1(p) =
p1

p2 + 1
, SINR2(p) = p2 .

Assuming power constraints p1 ≤ pmax
1 = 1 and p2 ≤ pmax

2 = 1,
we obtain an SINR region as depicted in Fig. 1.

user 1 transmits
at full power pmax

1

SINR user 1

S
IN

R
u
s
e
r

2

γ γ̂
1

10

Fig. 1. SINR feasible set for the 2-user MAC channel described in
Example 1.

Consider the boundary point γ depicted in Fig. 1. This point
is achieved by p∗ = [pmax

1 /2, pmax
2 ]T , so p∗ ∈ P(γ, pmax). This

vector achieves γ with component-wise minimum power. However,
p∗ is not the only element of P(γ, pmax). Because of interference
cancellation, we can increase the power (thus the SINR) of user 1,
without reducing the SINR at user 2. If both users transmit with
maximum power pmax then the corner point γ̂ is achieved. This
power vector is also contained in P(γ, pmax) because γ̂ ≥ γ , so
the SIR targets γ are still fulfilled. These effects will be further
discussed in the context of Pareto optimality in Section 2.6.
For an arbitrary p ∈ P(γ, pmax), consider the fixed point

iteration

p
(n+1)
k

= γkIk(p(n)), p
(0)
k

= pk, ∀k ∈ K . (6)

The limit p∗ = limn→∞ p(n) > 0 is special because it achieves γ

with component-wise minimum power [6].

Lemma 1. The vector p∗ fulfills pk ≥ γkIk(p) with minimum
component-wise power. That is, for all p ∈ P(γ, pmax) we have
p ≥ p∗.

The next lemma shows that the inequality constraint in (5) is
always fulfilled with equality for at least one component.
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Lemma 2. Consider an arbitrary p ∈ P(γ, pmax). There always
exists a k ∈ K such that pk = γkIk(p).

Definition 3. For an arbitrary given boundary point γ > 0, let K
be the set of all k ∈ K such that there exists a p(k) ∈ P(γ, pmax)

with p
(k)
k

> γkIk(p(k)). In our example Fig. 1 this is the first user,
whose power can be increased without decreasing the performance
of user 2.

We are only interested in the case where K is non-empty.
Otherwise the fixed point is the unique solution, which is trivial.
The next theorem shows that there always exists a vector p̂ for
which strict inequality holds for all k ∈ K simultaneously.

Theorem 1. Let I1, . . . , IK be log-convex interference functions.
Assume that γ is an arbitrary boundary point such that K is non-
empty. Then there exists a vector p̂ ∈ P(γ, pmax) such that

p̂k > γkIk(p̂), ∀k ∈ K , (7)

and for all p ∈ P(γ, pmax) we have

pk = γkIk(p), ∀k ∈ K\K . (8)

The following corollary is an immediate consequence of Theo-
rem 2.

Corollary 1. Let p∗ and p̂ be defined as in Lemma 1 and
Theorem 2, respectively. We have p̂ ≥ p∗ (Lemma 1) and thus
for all k ∈ K

p̂k > γkIk(p̂) ≥ γkIk(p∗) = p∗
k . (9)

The following theorem shows that these “oversized powers” from
K have no impact on the interference experienced by the other users
K\K. That is, the interference is the same as if we would use the
minimum-power vector p∗. Also, the powers of users K\K cannot
be oversized.

Theorem 2. Consider an arbitrary p ∈ P(γ, pmax). For all k ∈
K\K, we have Ik(p∗) = Ik(p) and p∗

k = pk.

2.5 Interference Coupling
The structure of the SINR region depends on the interference

coupling in the system. For axiomatic interference functions it is
not obvious how to define interference coupling.
The following dependency matrix is independent of the choice

of p.

[DI ]kl =

8<
:

1 if there exists a p > 0 such that Ik(p + δe
l
)

is not constant for some values δ > 0,
0 otherwise.

(10)
The non-zero entries in DI mark the transmitter/receiver pairs
which are coupled by interference. A zero entry means that no
interference is received, no matter how large the transmission
power is. As an example, think of users that are assigned to
different orthogonal resources, or separated by adaptive interference
rejection techniques.

2.6 Analysis of the Pareto Optimal Boundary
Thus far we have focused on the interference coupling aspects.

Now, we will analyze the resulting utility set. In this paper, “utility”
can stand for some arbitrary performance measure, which depends

on the SINR by a strictly monotone and continuous function φ
defined on R+. The utility of user k is

uk(p) = φk

`
SINRk(p)

´
, k ∈ K . (11)

Examples are MMSE: φ(x) = 1/(1 + x), BER: φ(x) = Q(
√

x),
high-SNR approximation of BER: φ(x) = x−α, with diversity
order α, or capacity: φ(x) = log(1 + x).
Let γk be the inverse function of φk, then γk(uk) is the minimum

SINR level needed by the kth user to satisfy the QoS target uk.
Let u ∈ U be a vector of QoS values, then the associated SINR
vector is

γ(u) = [γ1(u1), . . . , γK(uK)]T . (12)

QoS values u ∈ U are feasible if and only if C
`
γ(u), I , pmax)

´
≤

1. The QoS feasible set is the sub-level set

U = {u : C(γ(u), I , pmax) ≤ 1} . (13)

We are now interested in the boundary of U , which is characterized
by C(γ(u), I , pmax) = 1. The boundary is denoted by ∂U .
Definition 4. A boundary point u ∈ ∂U is said to be Pareto
optimal if there is no û ∈ ∂U with û � û.

From a practical point of view, this means that it is not possible
to improve the performance of one user without decreasing the
performance of another user.

Lemma 3. A boundary point u ∈ ∂U is Pareto optimal if and
only if γ(u) ∈ ∂S(I , pmax) is Pareto optimal.

With Lemma 3 we know that, for any utility set according to the
above definition we can analyze Pareto optimality by focusing on
the underlying SINR set. The results transfer automatically to the
corresponding utility sets.
With Theorem 1 we show the following result.

Theorem 3. Let p∗ be defined as in Lemma 1. A boundary point
γ ∈ ∂S(I , pmax) is Pareto optimal if and only if for p∗ = p∗(γ)
we have

P(γ, pmax) = {p∗} . (14)

That is, the set (5) consists of a single vector p∗.

2.7 Strict Monotonicity
In this section we introduce the additional property of strict

monotonicity. We begin by a definition. Based on the dependency
matrix DI , as defined by (10), we introduce the dependency set

Lk = {l ∈ K : [DI ]kl = 1} . (15)

This is the set of transmitters which have impact on user k.

Definition 5 (strict monotonicity). Ik(p) is said to be strictly
monotonic if p(1) ≥ p(2), with p

(1)
l

> p
(2)
l

for some l ∈ Lk,
implies Ik(p(1)) > Ik(p(2)).

In other words, Ik(p) is strictly increasing in at least one power
component.
The assumption of strict monotonicity enables us to derive a link

between the dependency matrix DI and Pareto optimality. This is
summarized by the next theorem.

Theorem 4. Let I1, . . . IK be log-convex interference functions
which are strictly monotonic on their respective dependency set.
The following statements are equivalent.
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• The dependency matrix DI is irreducible.
• Every boundary point is Pareto optimal.

3 LOGARITHMIC CONVEXITY AND NASH BARGAINING
It was shown in [3] that the game-theoretic framework of Nash

bargaining can be extended to a certain family of non-convex sets
ST c, as defined in the following Definition 7. The properties of
such sets are illustrated in Fig. 2. In this section we will extend the
results [3].
To this end, consider the bijective continuous mapping log(u) =

[log u1, . . . , log uK ]T , where u ∈ U ∩ RK
++. The image set of U

is
Log(U) = {q = log(u) : u ∈ U ∩ RK

++} . (16)

Definition 6. We say that a set U ⊆ RK
+ is a log-convex set if

Log(U) is convex.

Definition 7. By ST we denote the set of all closed downward-
comprehensive utility sets U ⊂ RK

+ such that the image set
Q = Log(U) is convex and the following additional property is
fulfilled: For any q̂, q̂ ∈ PO(Q) (the Pareto optimal boundary),
the connecting line q(λ) = (1 − λ)q̂ + λq̂, with λ ∈ (0, 1), is
contained in the interior of Q. By ST c we denote the set of all
U ∈ ST , which are additionally bounded, thus compact.

q1

q2

Pareto optimal boundary

0

q(λ)

q̂

q̌

Q = Log(U)

Fig. 2. Illustration of an image set Q = Log(U) with U ∈ ST c. The
set is strictly convex with the exception of possible boundary segments
parallel to the axes (dashed lines). Sets from ST c play an important role
in cooperative game theory [1]. For any U ∈ ST c there exists a single-
valued Nash bargaining solution.

3.1 Total Power Constraint
Assume that the sum of all transmission powers is limited by

Ptot. The next theorem shows that the resulting SINR set is strictly
convex after the transformation.

Theorem 5. Let I1, . . . , IK be arbitrary log-convex interference
functions. For all 0 < Ptot < +∞ the logarithmic transforma-
tion of the SINR region Log(S(I , Ptot)), as defined by (4), is
strictly convex. Thus, the entire boundary is Pareto optimal and
S(I , Ptot) ∈ ST c.

3.2 Individual Power Constraints
The possible occurrence of decoupled users did not matter under

a sum-power constraint, because the users are always coupled by
sharing a common power budget. However, in order to analyze the
behavior under individual power constraints, we need to take into
account the interference coupling. Pareto optimality was already
studied in Section 2. In this section we will show under which
conditions the Nash bargaining framework can be applied.

We begin by defining strict log-convexity on the dependency set.

Definition 8 (strict log-convexity). A log-convex interference func-
tion Ik is said to be strictly log-convex if for all p̂, p̌ for which
there is some l ∈ Lk with p̂l �= p̌l, we have

Ik

`
p(λ)

´
<

`
Ik(p̂)

´1−λ ·
`
Ik(p̌)

´λ
, λ ∈ (0, 1) . (17)

where p(λ) = p̂1−λ · p̌λ.

The following lemma shows that log-convexity implies strict
monotonicity (introduced in Section 2.7).

Lemma 4. Every strictly log-convex interference function is strictly
monotonic on its dependency set (see Definition 5).

Note, that the converse of Lemma 4 is not true. The next theorem
shows a sufficient condition for the SINR region to be contained
in ST c. It thereby extends the results [3].

Theorem 6. Let I1, . . . IK be strictly log-convex interference
functions, which depend on p1, . . . , pK . Then the SINR region
S(I , pmax) is contained in ST c.

4 CONCLUSIONS
In this paper we have analyzed log-convex utility regions, result-

ing from different assumptions and power constraints and interfer-
ence coupling. This “hidden convexity” is useful for developing
resource allocation strategies that operate on the boundary of the
region.
The objective of this paper is to provide a theoretical basis for ex-

ploiting log-convexity in interference-coupled multiuser networks.
The paper extends previous results [11] and [3].
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