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ABSTRACT

We present two speech transformation approaches designed to in-
crease the intelligibility of speech. The first approach is used in the
context of increasing the intelligibility of conversationally spoken
speech for hearing-impaired listeners. An initial experiment showed
that a relatively simple mapping function can map spectral features
of conversationally spoken speech closer to context-equivalent spec-
tral features of clearly spoken speech. The second approach aims
to increase the intelligibility of speaking-impaired individuals by the
general population. Results of listening tests indicated that although
an intelligibility increase was not achieved, listeners preferred the
transformed speech of the proposed system over that of an alterna-
tive system.

Index Terms— speech modification, hearing aid, speaking aid.

1. INTRODUCTION

A speech transformation system has speech as both its input and
its output (as opposed to speech recognition or text-to-speech syn-
thesis). Systems have focused on altering speaker characteristics
(changing the perceived speaker), voice characteristics (changing
the voice style of the same speaker), emotions, and other aspects.
We report here on experiments involving two speech transforma-
tion approaches that aim to increase the intelligibility of their input
speech. The first approach has as its input conversational speech of
any speaker of the general population, and presents its enhanced out-
put to a hearing-impaired listener. The second approach transforms
speech of an impaired speaker into an enhanced version for presen-
tation to the general population. The first transformation approach
has potential applications as an assistive hearing-aid device, while
the second has potential to play the role of an assistive speaking-aid.

2. IMPROVING THE INTELLIGIBILITY OF
CONVERSATIONAL SPEECH

Approximately 28 million people in the United States have some
degree of hearing loss, with 40–45% of the population over 65, and
about 83% of those over 70, classified as hearing impaired. Elderly
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listeners often have an especially difficult time understanding speech
in noise or under distracting conditions. Wearing a hearing aid is one
of the most often-used strategies that can partially compensate for a
hearing impairment. The primary benefit of hearing aids is to restore
hearing loss resulting from reduced sensitivity, by amplifying signal
energy in one or more frequency bands. No attempts are made to
perform prosodic or fine-grained spectral modifications, even though
it is known that increased speech intelligibility can be obtained by
processes distinct from simply regulating the energy of the speech
signal. For example, speakers naturally adopt a special speaking
style when aiming to be understood by listeners who are moderately
impaired in their ability to understand speech due to hearing loss, the
presence of background noise, or both. This style has been termed
“clear” (CLR) [e. g. 1]. In contrast, speech intended for a normal-
hearing listener in a quiet environment is commonly referred to as
“conversational” (CNV). The intelligibility of CLR speech is higher
than that of CNV speech, as measured in listeners of different age
groups, with normal and impaired hearing abilities, using different
types of speech materials, and in environments with different types
of background noise [for a brief overview, see 2].

Previous research has examined acoustic differences between
CNV and CLR speech. The following prosodic features have been
found to distinguish CLR speech from CNV speech: (1) the funda-
mental frequency (F0) is typically increased in range and mean, (2)
the consonant-vowel energy ratio (CVR) is increased, particularly
for stops and/or affricates, (3) phoneme durations are prolonged, es-
pecially in the tense vowels /i/, /u/, /A/, and /O/, (4) pauses are longer
in duration and occurred more frequently, and (5) the speaking rate is
significantly decreased. The following spectral features distinguish
CLR speech from CNV speech: (1) vowel formant frequencies show
expanded vowel spaces for lax vowels, (2) long-term spectra have in-
creased energies at higher frequencies (1000–3150 Hz), (3) alveolar
flaps occur less often and consonant stops tend to be released with
following aspiration, and (4) some speakers exhibit increased mod-
ulation indices for low modulation frequencies up to 4 Hz.

Current hearing aid systems focus on amplifying the speech sig-
nal in one or more frequency bands. However, this approach does not
address important problems that may be encountered by users, espe-
cially elderly listeners, who have more difficulty than younger lis-
teners in understanding rapid speech due to decreased auditory pro-
cessing capabilities or reduced working memory capacity. Motivated
by these findings, researchers have developed signal-processing al-
gorithms to increase the intelligibility of speech independent of am-
plification. Modifications included decreasing the rate of speech by
inserting pauses, modifying phoneme durations, and enhancing the
consonant-to-vowel energy ratios. Of these, only one study showed
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a statistically significant increase in intelligibility at the sentence
level, by amplifying the energy of specific consonants. Ultimately,
the causal relationship between sets of acoustic features and speech
intelligibility is not yet known.

To address this, recent studies reported on experiments that mea-
sured the degree of contribution of six high-level acoustic features to
intelligibility, by applying certain CLR features to CNV speech [2,
3]. This has been accomplished by using a “hybridization” algo-
rithm that (1) extracts CNV and CLR features from the same sen-
tences spoken in both CNV and CLR styles, then (2) constitutes a
“hybrid” (HYB) feature set from a particular subset of CLR features
and from the complementary subset of CNV features, and finally (3)
synthesizes HYB sentences from the HYB features. Testing the in-
telligibility of the HYB speech in noise indicated that the two main
sources of increased intelligibility of CLR speech for one particular
speaker are the spectrum and phoneme duration, and not the pausing
patterns, F0, energy, or phoneme sequence. For example, in one ex-
periment, the intelligibility of CNV was increased from 72% to 82%,
using CLR spectrum and phoneme duration features. The hybridiza-
tion algorithm is equivalent to transforming CNV speech with an
“oracle” mapping function, thus simulating maximum performance
levels of an automatic transformation system. In the remainder of
this section, we propose and test the feasibility of a spectral map-
ping component of such a speech transformation system.

2.1. Speech Corpus

The text material consisted of 70 phonetically-balanced sentences
from the set of IEEE Harvard Psychoacoustic Sentences [4]. One
male, a native speaker of American English, was recruited as a
speaker. We first recorded the sentences spoken in the CNV speak-
ing style, then the same sentences spoken in the CLR speaking style.
When recording CNV speech, the speaker was instructed to speak in
the way that he communicates in his daily life. When recording CLR
speech, he was instructed to speak clearly, as he would when com-
municating with a hearing-impaired listener. A technician listened to
each sentence, and the speaker was asked to record a sentence again
when pronunciation or style were not satisfactory. Initial estimates
of phoneme identities (including non-speech events) and boundaries
in each waveform were obtained using an existing forced-alignment
system [5]. Then a trained labeler checked and adjusted phoneme
identities and boundaries manually.

2.2. Spectral Mapping Experiment

We tested the hypothesis that a relatively simple transform exists
that maps CNV spectral features closer toward CLR spectral features
(motivated by earlier encouraging hybridization results [2]). First,
CNV and CLR speech sentences were aligned phonetically, since the
speaker often pronounced the same sentences differently, depending
on the speaking style (e. g. CLR speech had more pauses and un-
voiced plosive releases). To accomplish the alignment, a phoneme
feature table was created specifying voicing, manner, place, and
height features, with one 4-dimensional vector for each phoneme.
Each phonetic symbol in both label sequences was assigned its as-
sociated feature vector, resulting in two feature matrices. Then, dy-
namic time warping was used to find an optimal alignment path be-
tween the two matrices that resulted in the minimum Euclidean dis-
tance between the corresponding phonetic features. As a result, each
phoneme in one speaking style was associated with one phoneme in
the other speaking style either by a perfect match or a best-fit match.
In those cases where a one-to-one mapping was not possible, the

phoneme was considered to be an insertion/deletion.

We extracted 20th-order Linear Prediction Coefficients (LPC)
from asynchronous, 50% overlapping, Hanning-windowed, 25 msec
frames of the speech waveforms (sampled at 16 kHz) in the speech
corpus, and then converted the coefficients into Line Spectral
Frequencies (LSF). Iterating over all sentences, we accumulated
context-equivalent CNV-LSF and CLR-LSF vectors for (1) vow-
els, or (2) all phonemes that had a one-to-one mapping, stretching
the shorter sequence to match the longer sequence when phoneme
durations differed.

We designated 49 sentences of the corpus (70%) for training,
and the remaining sentences for testing. We estimated a Gaussian
mixture regression model [6] on the joint density of the CNV-LSF
and CLR-LSF vectors (3174 and 8653 vectors for vowels and all
phonemes, respectively) of the training data. Evaluating on the test
set, the log-spectral distance between mapped CNV spectra and as-
sociated CLR spectra of vowels was 4.56 dB, as compared to the
original distance of 5.36 dB between unmapped CNV spectra and as-
sociated CLR spectra, and 4.57 dB versus 5.17 dB for all phonemes.
The optimal number of mixture components was between two and
four. Thus, the mapping function was able to produce mapped CNV
spectral features that moved closer toward CLR spectral features.
We transformed a number of example sentences from the test set, us-
ing a LPC vocoder synthesis scheme and the spectral mapping func-
tion trained on all phonemes; informal listening tests indicated that
the transformed speech had very high quality. Further experiments
involving different speech representations and formal intelligibility
tests are planned.

3. IMPROVING THE INTELLIGIBILITY OF
DYSARTHRIC SPEECH

Dysarthria is a speech motor disorder usually resulting in a substan-
tive decrease in speech intelligibility by the general population. In
this section, we discuss a speaking-aid system with the aim of im-
proving the intelligibility of talkers with dysarthria. In overview, the
system first enrolls a new source dysarthric speaker by recording his
or her speech while reading of a word list. The system then ana-
lyzes these recordings and computes mapping function parameters.
During normal use, the dysarthric speaker talks with a microphone
in place, and when he or she is finished the system plays the trans-
formed speech over amplified speakers. We refer to this mode of
operation as “interpreter mode” because of the similarities to foreign
language interpretation.

The key idea of our approach is to improve intelligibility by
analysis, mapping, and synthesis of a small set of perceptually-
relevant speech features. The mapping step consists of moving the
dysarthric features towards known good target features by means
of a trained mapping function. The particular choice of speech
features is motivated by the need to represent speech intelligibly,
but not necessarily very naturally or with the dysarthric speaker’s
own voice. At the same time, the number of training parameters
should be kept small to allow training of the transformation function
with a relatively small amount of training data. For these reasons,
the speech features and synthesis methods used are similar to a
formant speech-synthesis approach, producing highly intelligible
and controllable speech from a compact representation. The system
consists of three major parts: a speech analyzer (used both during
training and transformation), a feature mapping learner (training),
and a speech transformer. Enrollment consists of analysis and train-
ing, whereas transformation consists of speech analysis, feature
mapping, and speech synthesis.
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Figure 1. BioSpeech system components: Headset (left) is attached
via USB adapter to PC (middle, belt attachment not shown), which
is attached to amplified speaker (bottom, with adjustable belt).

In a recent study, the intelligibility of dysarthric vowels of one
speaker was improved from 48% to 54% [7]. Improvement was
obtained by transforming monophthong vowels of a speaker with
dysarthria to more closely match the vowel space of a non-dysarthric
(target) speaker, using a feature set consisting of vowel duration and
formant F1, F2, and F3 stable points [see also 8]. We describe here
extensions to this system, with the aims of transforming any vowel
(including diphthongs) and distinguishing vowels from consonants
automatically. It was also required to implement the system to run
on a wearable platform (see Figure 1), consisting of a very small per-
sonal computer (OQO model 02), a lightweight headset (Sennheiser
ME3), an amplified speaker (ChatterVox). A final goal was to eval-
uate system performance extensively, using both listening experi-
ments and product surveys, comparing it to a commercially available
system, the SpeechEnhancer [9].

3.1. Speech Corpus

As text material, we created a 336 word list, consisting of consonant
(C) to vowel (V), VC, and CVC words. We recorded speech wave-
forms of 5 dysarthric (ataxic, flaccid, hyperkinetic, mixed types; av-
erage intelligibility was 58%) and 2 normal speakers uttering the
text material using a special purpose graphical user interface we de-
veloped for this task. After the recording process, we used a force-
alignment system [5] to create initial phoneme boundaries (phoneme
identities were given by the text material itself), which were subse-
quently checked and adjusted manually by an experienced labeler
for maximum accuracy. About two thirds of the data was used for
training, and about one third for testing.

3.2. Vowel Region Localization

The system has to automatically locate the vowel region in the
speech input; for this purpose, we trained a broad-category recog-
nizer for each dysarthric speaker, using broad classes {/j/ /w/ /l/ /9r/
B C V clo}, where B = burst, C = consonant which does not include
{/j/ /w/ /l/ /9r/ B}, V = vowel, and clo = pause or burst closure. In
testing we mapped B to C, for a total of 7 output categories. (We
trained B as distinct from C because the acoustics are different.)
Training was done using up to 4000 examples of each class. The
features were standard Mel-frequency warped cepstral coefficient
features using 22 filters and a window size of 16 msec. The classifier
used context-dependent categories, for a total of 38 output classes.
The phoneme labels used in training were obtained from the forced-
alignment performed earlier. Recognition of the test data used the
following grammar: {C1 V | V C2 | C1 V C2 | V c B | C1 V c B}
where C1 is any consonant, including a burst, C2 is any consonant
other than {B /j/ /w/}, and c is a burst closure. After recognition,
C1, C2, and cB were all mapped to C. Testing the vowel region lo-
calizer performance it was found that the average absolute distance
between the predicted vowel boundaries and the actual boundaries
was 22 msec, as compared to 50 msec using a previous approach
involving isotonic regression [7].

3.3. Enrollment and Transformation

Enrollment consisted of two steps: feature analysis and subsequent
training of a mapping function. During the first step, we aligned
the enrollment (source) speaker’s speech with a target speaker of
the same gender and extracted formant frequencies frame-by-frame
from both source and target speakers. We then fit a joint-density
Gaussian mixture regression model [6] on the training data.

During transformation, an entire utterance was analyzed to ob-
tain formant frequency values, to be used as input to the formant
modification operation. Unvoiced frames of speech, however, were
passed directly to the output. Additionally, any speech frequencies
above 4 kHz were passed through unmodified, to the output signal.
To generate the voiced regions of the transformed speech, the sys-
tem performed modifications to the energy and formant features (es-
timated using ESPS algorithms), and generated a new F0 trajectory
from the CVC boundary information. Energy modification was ap-
plied because the dysarthric speech often contained significant en-
ergy flutter (variations in energy), likely caused by high levels of
“vocal fry”. Similarly, the F0 trajectory of a dysarthric speaker of-
ten contained significant jitter (variations in F0). We discarded the
original F0 values, which were often estimated with large errors, in
favor of a synthetic F0 contour, generated by a simple superposi-
tional intonation model. Formants were modified by estimating for-
mant vectors frame-by-frame for the entire dysarthric vowel, map-
ping all vectors to the transformed formant vectors using the trained
joint-density Gaussian mixture regression model, and then creating
the transformed formant trajectory. This allowed us to transform
monophthong and diphthong vowels alike; the previous approach
was limited to only monophthong vowels.

The transformation system operated in approximately 0.2×real-
time; in other words, an utterance that was approximately 2 seconds
long (a very slowly spoken single syllable word) will be processed
in 400 msec (pipelining the system would further reduce this delay).

3.4. Listening Tests

Fourteen listeners participated in our listening tests, all native speak-
ers of American English and with self-reported normal hearing.
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Original Original+
BioSpeech

Original+
SpeechEnh.

Original+
Original

AAG 82 76 79 80

JMJ 68 68 64 69

Total 75 72 71 74

Table 1. Intelligibility scores in percent.

Ages ranged from 29–63, with an average age of 43. They lis-
tened to the stimuli using high-quality speakers in a quiet office
environment. The BioSpeech and SpeechEnhancer system outputs
were previously recorded from their respective portable speakers
using a high-quality microphone. Tests were administered via a
computerized experimental setup controlled by mouse.

In a preference test, listeners made a graded forced choice on a
five-point scale (where −2 and +2 indicated strong preferences, −1
and +1 weaker preferences, and 0 indifference) between two speech
samples. One of the stimuli was transformed using the BioSpeech
system and the other by the SpeechEnhancer. A male voice and a
female voice were selected (voices AAG and JMJ, respectively). Re-
sult indicated an overall preference for the BioSpeech system over
the SpeechEnhancer. The raw scores were processed such that posi-
tive values indicate a preference for the BioSpeech system and neg-
ative values a preference for the SpeechEnhancer. An average value
of 0.433 (t13 = 2.15, p < 0.05) was obtained. However, these re-
sults were strongly dependent on speaker, with an average value of
0.689 (t13 = 3.06, p < 0.01) for the male speaker and 0.183 for
the female speaker (t13 = 0.9, not significant). This difference may
depend on a gender difference or on the male speaker having sub-
stantially lower intelligibility (50%) than the female speaker (80%).
(Note, however, that the intelligibility test indicated that the male
speaker was more, and not less, intelligible than the female speaker;
this discrepancy may be due to the clinical intelligibility assessing
both consonants and vowels.)

In an intelligibility test, stimuli were presented in one of the fol-
lowing conditions: (1) the original dysarthric speech, simulating the
absence of any enhancement, (2) the original speech followed by the
BioSpeech system output, (3) the original speech followed by the
SpeechEnhancer system output, and (4) the original followed by the
original speech again, to measure the effect of mere repetition. Lis-
teners were asked to indicate which of four vowels they heard, for all
conditions. Results indicated no significant differences between the
BioSpeech and SpeechEnhancer products, but regrettably also not
between the systems and the original speech. In summary, neither
system enhanced intelligibility for these two speakers, while the two
products performed almost equally to each other.

3.5. Survey

Two videos were produced of individuals interacting with simulated
versions of the BioSpeech system. Ten adults viewed the videos,
inspected the hardware, and completed a survey developed based
on assistive technology outcomes efforts [10]. Seven participants
had amyotrophic lateral sclerosis and were moderately to severely
speech impaired; three participants were family members and pri-
mary communication partners.

The participants answered questions relating to the following
three survey topics: design and appearance, function, and personal
preference. In summary, the survey indicated that adults with mod-
erate to severe dysarthria think that the proposed system is a viable,
reliable, attractive and creative option to augment speech.

4. CONCLUSION

Speech transformation systems have tremendous potential to con-
tribute significantly to the quality of life of individuals with commu-
nication disorders. In this paper, we reported on research with the
goal of increasing intelligibility for impaired listeners or impaired
speakers. A first approach aims to transform conversational speech
of any speaker to more closely resemble clearly spoken speech, with
the potential of being used in assistive listening devices. Initial ex-
periments showed that a relatively simple mapping function was able
to map spectral features of conversationally spoken speech closer to
those of clearly spoken speech.

A second approach aimed at improving the intelligibility of
speakers with dysarthria by the general population, but did not
succed in demonstrating a significant improvement for the speakers
used in our evaluation. This may be because the transformation
system is optimal when the vowel space is strongly deviant, in
combination with relatively low formant variability. However, lis-
teners preferred the speech as modified by the proposed system as
compared to a competing system; presumably, this is due to the
elimination of hoarseness and other potentially unattractive features
of the original speech in the output speech.
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