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ABSTRACT

This paper combines complex signal processing with kernel

methods for applications in wind prediction. Specifically, we

consider developing least squares kernel algorithms for both

complex data and augmented complex data. The augmented

complex kernel algorithms have advantages over complex ker-

nel algorithms in both the areas of performance and complex-

ity. Use of kernels also allow implementation of nonlinear

algorithms by working in the dual space. We apply our algo-

rithm to wind series time prediction and show that our aug-

mented complex algorithms outperform other complex least

square algorithms.

1. INTRODUCTION

In recent years there has been a renewed interest in complex

signal processing. Research in [11, 12] give a rigorous discus-

sion of proper and improper complex vectors and processes.

In [5] there is a discussion of complex neural network algo-

rithms and applications. Complex signal processing is now

being applied to problems in communications [12] , imag-

ing, remote sensing, renewable energy [9], and biomedical

processing [8]. This paper discusses implementation of com-

plex and augmented complex algorithms for least squares ker-

nel methods. We demonstrate the performance of these algo-

rithms on wind data which is improper.

Predicting wind speed and direction is becoming increas-

ingly more important as we improve development of this source

of renewable energy. Accurate wind prediction can ensure the

efficient operation of wind turbines and wind farms. Short

term prediction is crucial to damage protection and vibration

control of wind turbines . Medium and long term prediction

can help with the integration of wind energy to the power grid

[9]. The power wind turbines generates is difficult to forecast,

because of fluctuations in wind speed and direction. The im-

pact of wind direction becomes more prominent when wind is

milder than in strong winds as placement of turbines becomes

more critical [7]. Previous research has found that using the

augmented complex LMS algorithm can more accurately pre-

dict wind speed and energy [9]. We extend this work by ap-

plying complex kernel methods.

Kernel methods have become a popular tool to use in many

applications, because they can be solved via convex optimiza-

tion methods, nonlinear processing can be performed, and the

solution is often found in the dual space via the kernel trick

[2, 10, 14]. In signal processing applications and time series

prediction it is often necessary to implement algorithms that

are online and adaptive. Kernel methods can easily be imple-

mented in an online recursive way when the algorithms use

a least squares cost function [6, 13]. This is because the so-

lution involves solving a set of linear equations that can be

solved in primal feature space or the kernel observation space

using recursive adaptive filtering methods [4]. The solution

depends on some subset of the observation data which are

called support vectors. A major problem with kernel least

squares methods is that the solution is not sparse as all ob-

servation data are support vectors [13]. The solution can be

made sparse in the number of support vectors by using various

methods including constrained subspace approaches [3, 6, 1].

For these methods the weight vector is constrained to lie in

the subspace generated by the support vectors.

Here we formulate a complex augmented kernel subspace

least squares algorithm. Section 2 discusses implementing

complex augmented kernel methods. We first look at the

sample complex correlation matrix and the sample augmented

correlation matrix. We then examine the complex kernel ma-

trix and the complex augmented kernel matrix. In Section 3

we discuss the complex augmented subspace kernel regres-

sion algorithm. Section 4 discusses issues associated with

online implementation of the complex augmented subspace

kernel regression algorithm. In Section 5 we look at applying

online algorithms to wind prediction. In conducting simula-

tions we consider performance, at different sampling rates for

wind classified that have ’high’,’medium’, and ’low’ speeds.

Section 6 summarizes results of this paper.
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2. COMPLEX AUGMENTED KERNELS

Let z(i) = zR(i) + jzI(i) ∈ Cd with 1 ≤ i ≤ m. The data

can be rewritten compactly as Z where Z = [z(1)| · · · |z(m)].
Z is known as the data matrix and can be expressed in terms

of real and imaginary parts as Z = ZR + jZI. For this data,

the complex correlation matrix is defined as

R = ZZH = ZRZT
R + ZIZT

I + j(ZIZR
T −ZRZI

T). (1)

We can also define the complex kernel matrix as

K = ZHZ = ZR
T ZR+ZI

TZI+j(ZR
TZI−ZI

TZR) (2)

In cases where the complex process is not proper [12] we can

augment the data matrix to create the augmented data matrix

Za =
[

Z
Z∗

]
. (3)

We can then get the augmented complex correlation matrix

given by

Ra = ZaZa
H =

[
R C
C∗ R∗

]
(4)

where

C = ZZT = ZRZT
R − ZIZH

I + j(ZIZR
T + ZRZI

T). (5)

and the augmented kernel is given by

Ka = Za
HZa = K + K∗ = 2(ZR

T ZR + ZI
TZI) (6)

which is a real kernel matrix. When performing least squares

regression with z describing the observation vector, we can

work with either the kernel matrix or the correlation matrix.

For improper complex data more information is gotten from

the augmented case where we can work with the augmented

kernel matrix Ka or the augmented correlation matrix Ra.

When working in primal space with correlation matrices it

may be more advantageous to work with the complex correla-

tion matrix R rather than the augmented complex correlation

matrix Ra. This is especially true if data is proper or circular

(i.e.E(C) = 0) as more processing will be required with Ra

as it is 2d× 2d versus R which is d× d.

In many cases there are distinct advantages with working

with kernel matrices as opposed to correlation matrices as we

are interested in more flexibility, the input dimension is high,

or we want to work with nonlinear kernels. When working

with kernels it is always advantageous to work with the com-

plex augmented kernel matrix rather than the complex kernel

matrix. For improper data performance will be better, both

the complex and augmented complex kernel matrix have the

same dimension, and computations are less for the complex

augmented kernel matrix as all entries are real whereas they

are complex for the complex kernel matrix (i.e. see equations

(2) and (6)). From here on, when we discuss kernel methods

we will work with the augmented complex case.

3. AUGMENTED LEAST SQUARES SUBSPACE
REGRESSION

In this section we develop an augmented complex least-squares

subspace kernel algorithm using the least squares Support Vec-

tor Machine developed in [13] and the subspace method pre-

sented in [6]. Here we are given training examples (x(i), y(i)),
1 ≤ i ≤ m where x(i) ∈ Cn and y(i) ∈ C. We represent the

data compactly as (x,y) where x = [x(1)| . . . |x(m)] and

y = [y(1), . . . , y(m)]T . The inputs are transformed from

input space to feature space via kernel functions φ(x) that

map inputs from Cn to feature space Cd. Let Z = Φ(x) =
[φ(x(1))| . . . |φ(x(m))]. Then using the augmented system

we can formulate a least squares optimization problem given

by

min J(wa, b) = min
wa,b

1
2
||wa||2 +

γ

2
||e||2 (7)

subject to

e = y − Za
Hwa − 1b (8)

where wa ∈ C2d is the augmented weight vector, 1 is a vector

of 1s, and b ∈ C is the complex threshold value. Equation

(7) contains two terms with the first term controlling com-

plexity and the second term controlling squared error with γ
denoting the regularization value that weights the squared er-

ror. The subspace method picks a subset of ms columns of

Za to form a matrix Zs. The training inputs associated with

these columns are the support vectors and methods for choos-

ing these support vectors are discussed in [6]. The augmented

weights are constrained to lie in the subspace generated by

the chosen columns and this constraint can be expressed as

wa = Zsα. (9)

where α is a complex-valued ms vector weighting the training

feature vectors. Define KSS = Zs
HZs and KS = Zs

HZa

and note that these matrices like the matrix Ka are all real

for the augmented case. By substituting equations (8,9) in

equation (7) we have that

min Q(α, b) = min
1
2
αHKSSα +

γ

2
||y −KS

Hα− 1b||2.
(10)

This problem is solved by finding the solution to the following

set of linear equations,

[
m 1T KS

H

KS1 KSS/γ + KSKS
H

] [
b
α

]
=

[
1T y
KSy

]
. (11)

Assume A = KSS/γ+KSKS
H is invertible. By elimination

we then get that

b =
1T y − 1T KS

HA−1KSy
m− 1T KS

HA−1KS1
(12)

and

α = A−1KS(y − 1b). (13)
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To get the estimated output for a given input x, let z = Φ(x)
and

za =
[

z
z∗

]
.

The estimated output is then given by

ŷ(z) = wa
Hza + b. (14)

Substituting equation (9) into the above equation we then get

that

ŷ(z) = αHKSz + b (15)

where KSz = Zs
Hza.

4. ONLINE AUGMENTED KERNEL ALGORITHMS

We consider prediction of time series data. Data is given by a

sequence of complex data, x(n) ∈ C. Here the input z(n) =
[x(n) . . . x(n − d + 1)] and the associated output is y(n) =
x(n + L) where L ≥ 1 is the prediction step. For kernel

algorithms we consider online recursive algorithms where at

time n the support vector parameters are given by α(n) and

the threshold value is given by b(n). The estimate of y(n) is

ŷ(n) = α(n)HKSz(n) + b(n) (16)

The kernel online algorithm is then given the output y(n) and

updates the data matrices to compute the inverse of A and then

update the support vector and threshold value. In addition

to the length of the input vector, d we must determine the

number of support vectors ms and the number of information

vectors m that are used in the kernel subspace algorithm.

For the kernel subspace algorithm we need a method to

choose the ms support vectors. For time series prediction it

is reasonable to choose the ms most recent observation data

as support vectors. Similarly the m > ms information vec-

tors are chosen from the most recent observations. The online

kernel algorithms require more storage space than recursive

least squares algorithms as we need to store the m informa-

tion vectors in addition to data information matrices. This is

balanced against the advantages of kernel methods; ability to

perform nonlinear processing, more flexibility in the design

of kernel methods, and the advantages with working in the

dual observation space.

5. WIND PREDICTION USING COMPLEX
ALGORITHMS

We examined wind data sampled at 50Hz in an urban envi-

ronment [9]. The data was divided into three data sets; ’high’,

’medium’, and ’low’. Data was sampled over a one day pe-

riod. For this time series data we formed an input vector and

considered one step prediction. Data contained wind in East

and North directions which were mapped on to a complex

vector. We considered recursive online algorithms where at

each time instant the algorithm first made a prediction, was

given the correct output, and the new data vector.

Simulations were conducted for a complex RLS (CRLS)

algorithm as performance was similar to the augmented com-

plex RLS algorithm with less computations. For kernel al-

gorithms we used the augmented complex subspace kernel

(ACSK) algorithm as it gave better performance than the com-

plex subspace kernel algorithm with less computations. Here

we show simulations where data was first averaged over ten

data samples. We then downsampled this averaged data at

rates of every (1,2,5,10, and 15) samples. Sampling at lower

rates is important to save on communication and complexity

costs. Here the prediction step L is the sampling rate.

Results are shown in fig. 1 for ’high’ data, fig. 2 for

’medium’ data, and fig. 3 for ’low’ data. When all data

was taken there was not much difference between ACSK and

CRLS performance. ACSK performance was slightly bet-

ter than CRLS performance for ’high’ data. When data was

sampled at intervals of (2,5,10, and 15) data points ACSK

performed better than CRLS. ACSK stores input data more

effectively than CRLS. The degradation from sampling less

frequently in ACSK is less than that from CRLS. For ’high’

data, absolute error rates are higher and low order filters per-

form about the same as high order filters. Here the perfor-

mance gaps between sampled data at intervals of (2,5,10 and

15) data points is less. For ’low’ data there was larger gaps

in performance between ACSK and CRLS for sampled data

at intervals of (2,5,10 and 15) data points. This is because

more information could be captured about relationships be-

tween different data using kernels.

Fig. 1. ’High’ data. Average of ten data. Solid lines (dashed

lines) are ACSK (CRLS) with curves from bottom to top rep-

resenting sampling every (1,2,5,10,15) points.

6. SUMMARY

This paper implements an augmented complex subspace ker-

nel algorithm using a least squares cost criteria. This algo-
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Fig. 2. ’Medium’ data. Average of ten data. Solid lines

(dashed lines) are ACSK (CRLS) with curves from bottom

to top representing sampling every (1,2,5,10,15) points.

Fig. 3. ’Low’ data. Average of ten data. Solid lines (dashed

lines) are ACSK (CRLS) with curves from bottom to top rep-

resenting sampling every (1,2,5,10,15) points.

rithm has a number of desirable properties in that the aug-

mented kernel matrix is real, performance is superior to a

complex subspace kernel algorithms, nonlinear kernels can

easily be implemented, the algorithm can be implemented in

an online recursive manner, and the algorithm provides a lot

of flexibility in its design.

We apply the complex algorithms to the prediction of wind.

The augmented kernel subspace algorithm is shown to have

similar or better performance than recursive least squares (RLS)

algorithms working with correlation or augmented correlation

matrices. The kernel algorithms require more storage than

RLS algorithms, but have more flexibilty and performance is

better when data is averaged and sampled. This is true for

’high’, ’medium’, and ’low’ wind data.
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