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Abstract — Recently, many authors have shown that high-
resolution parameter estimation schemes can be significantly
improved if the sources are non-circular. For example, enhanced
versions of Root MUSIC and standard ESPRIT for non-circular
sources as well as the entirely real-valued NC Unitary ESPRIT
algorithm have been proposed.

We can achieve further enhancements in the R-dimensional
(R-D) case by using tensor algebra to express and manipulate
multidimensional signals in their natural R-D structure. This
has led to tensor-based parameter estimation algorithms with
enhanced estimation accuracy such as R-D Unitary Tensor-
ESPRIT.

In this paper we demonstrate how to achieve both benefits
at the same time. This is not straightforward since the usual
method to exploit non-circular sources destroys the tensor struc-
ture and therefore a new approach had to be found. This ap-
proach allows us to derive the NC R-D Unitary Tensor-ESPRIT
algorithm which exploits the non-circularity of the sources and
the R-D structure of the measured signals jointly. Numerical
computer simulations demonstrate the benefit in terms of a sig-
nificantly improved accuracy compared to state of the art algo-
rithms.

Index Terms— Multidimensional signal processing, Parameter
estimation, Array signal processing, Direction of arrival estimation

1. INTRODUCTION

Multi-dimensional harmonic retrieval problems are encountered in a
variety of signal processing applications including radar, sonar, com-
munications, medical imaging, and the estimation of the parameters
of the dominant multipath components from MIMO channel mea-
surements. R-dimensional subspace-based methods such as R-D
Unitary ESPRIT, R-D MUSIC, or R-D RARE, have become pop-
ular solutions for this task.

One recent source of improvement of these methods has come
from the use of tensors which allow a more flexible treatment of
R-dimensional signals. For example, in [8] R-D Unitary Tensor-
ESPRIT was derived and it was shown that tensor-based improved
subspace estimates can enhance any subspace-based R-D parameter
estimation scheme.

Recent investigations have also shown that the accuracy of
harmonic retrieval algorithms can be significantly enhanced if the
sources transmit non-circular symbols [3]. Corresponding versions
of Root MUSIC, 2-D Root MUSIC standard ESPRIT, and R-D Uni-
tary ESPRIT are discussed in [1], [11], [13], and [7], respectively.

In this paper we demonstrate how we can exploit the tensor
structure of the R-D data model and non-circular source signals at
the same time. This is not straightforward since the usual way to take
advantage of non-circular source signals is to define an augmented

measurement matrix with twice the number of sensors. However,
this augmentation destroys the R-D structure of the measurements
and thus the augmented measurement matrix cannot be written in
tensor form any more.

We therefore derive a novel way to exploit non-circular sources
using tensors. This is achieved by defining augmentations in all di-
mensions and then combining these through a modified version of
the tensor shift invariance equations. This leads to the NCR-D Uni-
tary Tensor-ESPRIT algorithm that captures the benefits of NC Uni-
tary ESPRIT [7] and R-D Unitary Tensor-ESPRIT [8] at the same
time. We also demonstrate the enhanced accuracy via computer
simulations and compare the performance of the algorithms to the
corresponding Cramér-Rao bounds (cf. [9]).

2. NOTATION

To distinguish between scalars, vectors, matrices, and tensors, the
following notation is used throughout the paper: Scalars are de-
noted as italic letters (a, b, A, B), vectors as lower-case bold-faced
letters (a, b), matrices are represented by upper-case bold-faced let-
ters (A, B), and tensors are written as bold-faced calligraphic letters
(A, B).

The superscripts T,H ,−1 represent (matrix) transposition, Her-
mitian transposition, and matrix inversion, respectively. Moreover, ∗
denotes the complex conjugate operator.

An R-dimensional tensor A ∈ C
M1×M2...×MR is an R-way

array of size Mr along mode r. The r-mode vectors of A are
obtained by varying the r-th index and keeping all other indices
fixed. Collecting all r-mode vectors into a matrix we obtain
the r-mode unfolding of A which is represented by [A](r) ∈

C
Mr×Mr+1·...·MR·M1·...·Mr−1 . The ordering of the columns in

[A](r) is chosen in accordance with [2]. The r-rank ofA is defined
as the rank of [A](r). Note that in general, all the r-ranks of a tensor
A can be different.

The r-mode product between a tensor A ∈ C
M1×M2...×MR

and a matrix Ur ∈ C
Pr×Mr is symbolized by B = A ×r Ur . It is

computed by multiplying all r-mode vectors from the left-hand side
by the matrix Ur , i.e., [B](r) = Ur · [A](r).

The Higher-Order SVD (HOSVD) of a tensorA ∈ C
M1×M2...×MR

is given by

A = S ×1 U1 ×2 U2 . . . ×R UR

where S ∈ C
M1×M2...×MR is the core tensor, which satisfies the

all-orthogonality conditions [2] and Ur ∈ C
MR×MR are the unitary

matrices of r-mode singular vectors for r = 1, 2, . . . , R.
To represent the concatenation of two tensorA and B along the

r-th mode we use the operator [A rB] [10]. Note that two tensors
can only be concatenated along the r-th mode if they have the same
size in all modes q �= r, q = 1, 2, . . . , R.
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3. DATA MODEL

In this paper we study R-dimensional harmonic retrieval problems
for data sampled on an R-dimensional grid. The underlying data
model for the observation of d sources using anR-dimensional array
withM1 × M2 . . . × MR sensors that collects N snapshots in time
can be described in the following fashion [8]

X = A ×R+1 S
T + N . (1)

Here, A ∈ C
M1×...×MR×d represents the array steering tensor

which depends on the unknown spatial frequencies μ
(r)
i for the i-

th source in the r-th mode for i = 1, 2, . . . , d and r = 1, 2, . . . , R.
The tensor N ∈ C

M1×...×MR×N consists of samples of the addi-
tive noise process at the receiver and the matrix S ∈ C

d×N contains
the source symbols si(tn) for i = 1, 2, . . . , d and n = 1, 2, . . . , N .

An equivalent matrix representation of (1) is given by

X = A · S + N , (2)

where X = [X ]T(R+1) ∈ C
M×N , A = [A]T(R+1) ∈ C

M×d, and
N = [N ]T(R+1) ∈ C

M×N . Here we have used the short hand
notationM = M1 · M2 · . . . · MR for the total number of sensors.

In order to use ESPRIT-type algorithms we require the array to
have a shift-invariant structure in all R modes [6]. Additionally, for
NC R-D Unitary Tensor-ESPRIT, we need an array that is centro-
symmetric [5], i.e., ΠM · A∗ = A · Δ for some unitary diagonal
matrixΔ ∈ C

d×d, whereΠM is theM ×M exchange matrix with
ones on its antidiagonal and zeros elsewhere. In other words, the
(m1, m2)-element ofΠM is equal to one ifm1 + m2 = M + 1.

To apply the enhanced Tensor-ESPRIT-type algorithms for
non-circular sources, we require each user to emit strict-sense non-
circular signals [9]. This condition implies that the symbols are
real-valued (e.g., BPSK, M-ASK1) except for an arbitrary phase
angle ϕi, i = 1, 2, . . . , d. We can include this assumption in the
data model by factorizing the matrix S in the following way [7]

S = Ψ · S0, where S0 ∈ R
d×N and (3)

Ψ = diag
��

ejϕ1 , ejϕ2 , . . . , ejϕd

��
. (4)

4. R-D SHIFT INVARIANCE

In this section we revisit the tensor-valued shift invariance equations
from [8] and propose a modification on how to solve them which is
useful in deriving the NC R-D Unitary Tensor-ESPRIT algorithm.

In order to apply R-D ESPRIT-type algorithms, the array must
be shift invariant in R dimensions. This can be expressed in the
following set of tensor equations

A ×r J
(r)
1 ×R+1 Φ

(r) = A ×r J
(r)
2 . (5)

Here, J (r)
1 , J

(r)
2 ∈ R

M
(sel)
r ×Mr represent the selection matrices that

selectM (sel)
r out ofMr sensors for the first and the second subarray

in the r-th mode andΦ
(r) = diag

��
ejμ

(r)
1 , . . . , ejμ

(r)

d

��
.

In presence of d sources, all the n-ranks of the noise-free sig-
nal component in (1) are less than or equal to d. We can therefore

1Note that we can also include modulation schemes for which the phase
is not constant but varies deterministically, e.g., MSK or OQPSK. These can
be turned into real-valued constellations by proper derotation, i.e., a compen-
sation of the deterministic phase at the receiver.

compute an HOSVD-based low-rank approximation of X in the fol-
lowing way

X ≈ S
[s] ×1 U

[s]
1 . . . ×R U

[s]
R ×R+1 U

[s]
R+1 where (6)

S
[s] ∈ C

p1×p2...×d,

U
[s]
r ∈ C

Mr×pr for r = 1, 2, . . . , R and U
[s]
R+1 ∈ C

N×d.

Here, pr = min{Mr , d} for r = 1, 2, . . . , R. The tensor S [s] is ob-
tained from the core tensor S of the HOSVD ofX by truncating it to
pr elements in the r-th mode. Similarly,U [s]

r is obtained by truncat-
ing the r-mode singular vector matrix Ur to pr columns. Note that
we have assumed N ≥ d. IfN is smaller, preprocessing in the form
of forward-backward averaging (which is always included in Uni-
tary ESPRIT) and/or spatial smoothing can be applied to virtually
increase the number of snapshots N . For simplicity, in the sequel
we ignore the influence of the noise and write equalities. In the pres-
ence of noise, the following HOSVDs represent low-rank approx-
imations and the shift invariance equations based on the estimated
subspaces hold approximately (creating the need for an appropriate
least squares method to solve them).

In [8] we have shown that the unknown array steering tensorA
in (5) can be eliminated using the HOSVD ofX . We then obtain the
shift invariance relations in the following form

U
[s] ×r J

(r)
1 ×R+1 Ψ

(r) = U
[s] ×r J

(r)
2 , (7)

which can be solved for the unknown matricesΨ(r) using an appro-
priate least squares technique (e.g., LS, SLS [4], or TS-SLS [10]).
Here, we use the definition U [s] = S [s] ×1 U

[s]
1 . . . ×R U

[s]
R .

Alternatively, we can express (7) in the following equivalent
form

V
[s]
r ×r J

(r)
1 ×R+1 Ψ

(r) = V
[s] ×r J

(r)
2 , (8)

where V
[s]
r = S [s] ×r U

[s]
r . This form of the shift invariance equa-

tions is easily derived from (7) by applying the q-mode product with
U

[s]H

q for all q = 1, 2, . . . , R, q �= r. It is worth noting that even
though solving (7) or (8) yields exactly the same solution in Ψ

(r),
for a small d the complexity of solving (8) is lower because V

[s]
r has

less elements than U [s].
In [8] we have also shown that forward-backward averaging

can be applied to the measurement tensor and that this tensor
can be transformed into an equivalent real-valued tensor of size
M1 × M2 . . . × MR × 2N . We then compute the real-valued
HOSVD of the transformed measurement tensor ϕ(X ) in the fol-
lowing fashion

ϕ(X ) = L
[s] ×1 E

[s]
1 . . . ×R E

[s]
R ×R+1 E

[s]
R+1. (9)

The real-valued invariance equations can now also be stated in
two forms

E
[s] ×r K

(r)
1 ×R+1 Υ

(r) = E
[s] ×r K

(r)
2 (10)

F
[s]
r ×r K

(r)
1 ×R+1 Υ

(r) = F
[s]
r ×r K

(r)
2 , (11)

where (10) was derived in [8] for E [s] = L[s] ×1 E
[s]
1 . . . ×R E

[s]
R

and (11) is the modified version with F
[s]
r = L[s] ×r E

[s]
r . Here

K
(r)
1,2 represent the transformed selection matrices (cf. [8]).
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5. NC R-D UNITARY TENSOR-ESPRIT

In [7] we have shown that in the presence of strict sense non-circular
sources we can virtually double the number of available sensors by
defining the augmented measurement matrixX (nc) in the following
fashion

X
(nc) =

�
X

Π · X∗

�
∈ C

2M×N , (12)

which admits a factorization into

X
(nc) = A

(nc) · S + N
(nc), where (13)

A
(nc) =

�
A

Π · A∗ · Ψ∗ · Ψ∗

�
and N

(nc) =

�
N

Π · N ∗

�
.

Note that in (13) we have used the fact that S can be factored ac-
cording to (3) if it contains strict sense non-circular sources. In the
tensor case, we cannot apply the same operation sinceX (nc) cannot
be expressed in tensor form. However, the augmentation operation
can be applied in any of theRmodes. This leads toR different ways
of defining an augmented measurement tensor

X
(nc,r) =

�
X r X̃

�
where (14)

X̃ = X
∗ ×1 ΠM1 . . . ×R ΠMR

.

Note that X (nc,r) has size 2Mr along mode r.
Let us introduce the HOSVD ofX (nc,r) in the following fashion

X
(nc,r) = S

(r)[s] ×1 U
(r)[s]
1 . . . ×R U

(r)[s]
R ×R+1 U

(r)[s]
R+1 . (15)

Note that for simplicity we ignore the influence of the noise as in
the previous section and use the truncated HOSVD defined in [8].
From the R HOSVDs (r = 1, 2, . . . , R) we can construct R shift
invariance equations using the modified form defined in (8)

V
(nc,r)
r ×r J

(nc)(r)
1 ×R+1 Ψ

(r) = V
(nc,r)
r ×r J

(nc)(r)
2

where V
(nc,r)
r = S

(r)[s] ×r U
(r)[s]
r . (16)

Here, J
(nc)(r)
n ∈ R

2M
(sel)
r ×2Mr represent the extended selection

matrices that can be computed from J
(r)
n for n = 1, 2 and r =

1, 2, . . . , R in the following fashion

J
(nc)(r)
1 =

�
J

(r)
1 0

M
(sel)
r ×Mr

0
M

(sel)
r ×Mr

Π
M

(sel)
r

· J
(r)
2 · ΠMr

�
(17)

J
(nc)(r)
2 =

�
J

(r)
2 0

M
(sel)
r ×Mr

0
M

(sel)
r ×Mr

Π
M

(sel)
r

· J
(r)
1 · ΠMr

�
. (18)

Note that for centro-symmetric arrays, (17) and (18) simplify to
J

(nc)(r)
n = I2⊗J

(r)
n for n = 1, 2, since thenΠ

M
(sel)
r

·J
(r)
1 ·ΠMr

=

J
(r)
2 [6]. This shows that the number of sensors is virtually doubled
for each of the shift invariance equations we solve.2

Due to the fact that we restricted our attention to centro-
symmetric arrays, we can apply forward-backward averaging and
then transform the shift invariance equations into the real-valued
domain. Since the resulting method is a combination of NC Unitary
ESPRIT [7] and R-D Unitary Tensor-ESPRIT [8] it will be termed
NC R-D Unitary Tensor-ESPRIT.

2It is also possible to construct shift invariance equations fromV
(nc,r)
q =

S
(r)[s] ×q U

(r)[s]
q , however for q �= r the number of sensors is not virtually

doubled and therefore q = r is always a better choice.

As shown in [8], forward-backward averaging and the transfor-
mation into the real-valued domain can be formulated in terms of
tensors in the following manner

ϕ
�
Z

(nc,r)
�

= Z
(nc,r) ×1 QH

M1
. . . ×R QH

MR
×R+1 QH

2N (19)

Z
(nc,r)

=

�
X

(nc,r)
R+1

	
X

(nc,r)∗ ×1 ΠM1
. . . ×R+1 ΠN


�
where Qp represent the unitary sparse left-Π-real matrices of size
p × p introduced in [5]. Note that (19) requires a matrix Q2Mr

of
size 2Mr ×2Mr in the r-th mode. As for NC Unitary ESPRIT there
is a convenient way to compute (19) directly from the measurements,
since

ϕ
�
Z(nc,r)

�
=

� 	
2 · Re

�
X̄

(r)
�

r 2 · Im
�

X̄
(r)
�


R+1

OM1×...×2Mr×...×MR×N

�
, where

X̄
(r)

= X ×1 QH
M1

. . . ×r−1 QH
Mr−1

×r+1 QH
Mr+1

. . . ×R QH
MR

and O represents the zero tensor. Let the real-valued HOSVD of
ϕ
	
Z(nc,r)



be given by (the last N slices in the (R + 1)-th mode

can be dropped prior to computing the HOSVD)

ϕ
	
Z

(nc,r)



= L
(r)[s] ×1 E

(r)[s]
1 . . . ×R E

(r)[s]
R ×R+1 E

(r)[s]
R+1 . (20)

We can then express the real-valued equivalent of (16) in the follow-
ing fashion

F
(nc,r)
r ×r K

(nc)(r)
1 ×R+1 Υ

(r) = F
(nc,r)
r ×r K

(nc)(r)
2 ,

where F
(nc,r)
r = L

(r)[s] ×r E
(r)[s]
r , (21)

and the transformed selection matrices are given by

K
(nc)(r)
1 = 2 · Re

�
Q

H

2M
(sel)
r

· J
(nc)(r)
2 · Q2Mr

�
(22)

K
(nc)(r)
2 = 2 · Im

�
Q

H

2M
(sel)
r

· J
(nc)(r)
2 · Q2Mr

�
. (23)

The matrices Υ
(r) are estimated from (21) by an appropriate

least squares method (e.g., LS, SLS [4] or TS-SLS [10]). To achieve
automatic pairing of the spatial frequencies across dimensions, the
eigenvalues of Υ(r) are estimated jointly for all r = 1, 2, . . . , R.
This can be accomplished by a simultaneous Schur decomposi-
tion [6] or by simultaneous diagonalization, since in the absence
of noise, the matrices satisfy Υ

(r) = T · Ω
(r) · T−1, where

Ω
(r) is a diagonal matrix with the terms ω

(r)
i on its diagonal for

i = 1, 2, . . . , d. In other words even though the matricesΥ(r) stem
from different HOSVDs of the individual augmented measurement
tensors, they share same transform matrix T , which facilitates the
pairing. This can be shown using the fact that in the absence of
noise A = U [s] ×R+1 T [8]. From the estimated ω

(r)
i , the spatial

frequencies are obtained using the relation μ
(r)
i = 2arctan

�
ω

(r)
i

�
[6].

6. SIMULATION RESULTS
To demonstrate the superior performance of NC R-D Unitary
Tensor-ESPRIT compared to previous approaches, we present some
numerical simulations in this section. Here, we compare 2-D ver-
sions of Unitary ESPRIT (UE) [5], Unitary Tensor-ESPRIT (UTE)
[8], NC Unitary ESPRIT (NC UE) [7], and the NC Unitary Tensor-
ESPRIT algorithm (NC UTE) proposed in this paper. For the first
two algorithms, the corresponding deterministic Cramér-Rao bound
[12] is shown, for the latter two we plot the deterministic Cramér-
Rao bound for strict-sense non-circular sources (CRBnc) [9] as a
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Fig. 1. Mean square estimation error (summed over sources and modes)
versus signal to noise ratio for a scenario with d = 3 correlated sources (ρ =

0.99) at fixed positions μ
(1)
1 = μ

(2)
1 = 1, μ

(1)
2 = μ

(2)
2 = 0.85, μ

(1)
3 =

μ
(2)
3 = 1.15 emitting Gaussian distributed symbols with phase angles ϕ1 =

0, ϕ2 = π/2, ϕ3 = π/4 radiating towards a 5 × 7 URA which collects
N = 10 snapshots in time.

comparison. The mean squared errors are obtained via Monte Carlo
simulations averaged over 2000 experiments.

The simulation results depicted in Fig. 1 show a scenario where
a 5× 7 uniform rectangular array (URA) captures N = 10 temporal
snapshots of d = 3 sources at the fixed positions μ

(1)
1 = μ

(2)
1 =

1, μ
(1)
2 = μ

(2)
2 = 0.85, μ

(1)
3 = μ

(2)
3 = 1.15. The matrix S0 in

(3) contains real-valued Gaussian distributed symbols, the sources
are correlated with a pairwise correlation of ρ = 0.99, and have
fixed phase angles of ϕ1 = 0, ϕ2 = π/2, ϕ3 = π/4. We observe
that Unitary Tensor-ESPRIT and NC Unitary ESPRIT outperform
Unitary ESPRIT and that NC 2-D Unitary Tensor-ESPRIT has an
even better accuracy since it can benefit of non-circular sources and
the 2-D structure at the same time.

Similarly, Fig. 2 demonstrates the superiority of the novel al-
gorithm in a scenario where d = 4 uncorrelated sources with real-
valued Gaussian distributed symbols in S0 are considered and an
8 × 8 URA with N = 10 snapshots is used. For this scenario,
the positions of the sources are given by μ

(1)
1 = μ

(2)
1 = 1, μ

(1)
2 =

μ
(2)
2 = 0.9, μ

(1)
3 = μ

(2)
3 = 0.8, μ

(1)
4 = μ

(2)
4 = 0.7 and the phase

angles are set to ϕ1 = 0, ϕ2 = π/6, ϕ3 = π/3, ϕ4 = π/2.

7. CONCLUSIONS
In this paper we propose the novel efficient direction-of-arrival esti-
mation algorithm NC R-D Unitary Tensor-ESPRIT. Similarly to R-
D Unitary Tensor-ESPRIT it is based on the HOSVD and therefore
it exploits the R-dimensional structure of the measured data already
in the subspace estimation step. Moreover, we show that the non-
circularity of the source symbols can very effectively be exploited in
the tensor case. The “virtual doubling” of the available sensors that
was proposed for NC Unitary ESPRIT cannot be used in the tensor
case because the augmented measurement matrix does not have an
equivalent tensor form. However, we show that the augmentation
can be applied in all R dimensions separately and then joined via
a modified version of the tensor shift invariance equations. There-
fore, all R shift invariance equations in an R-D harmonic retrieval
problem are affected. Simulation results show that NC R-D Unitary

20 25 30 35 40
10−4

10−3

10−2

10−1

100

101

SNR [dB]

M
SE

UE
UTE
CRB
NC UE
NC UTE
CRBnc

Fig. 2. Mean square estimation error (summed over sources and modes) ver-
sus signal to noise ratio for a 6 × 6 array capturing N = 10 snapshots from
d = 4 uncorrelated sources at fixed positions μ

(1)
1 = μ

(2)
1 = 1, μ

(1)
2 =

μ
(2)
2 = 0.9, μ

(1)
3 = μ

(2)
3 = 0.8, μ

(1)
4 = μ

(2)
4 = 0.7 emitting Gaussian dis-

tributed symbols with phase angles ϕ1 = 0, ϕ2 = π/6, ϕ3 = π/3, ϕ4 =

π/2.

Tensor-ESPRIT outperforms NC Unitary ESPRIT and R-D Unitary
Tensor-ESPRIT significantly.
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