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ABSTRACT

This paper introduces the optimal widely linear (WL) mini-
mum variance distorsionless response (MVDR) beamformer
for the reception of an unknown signal of interest (SOI) cor-
rupted by potentially second order (SO) noncircular back-
ground noise and interference. The SOI, whose waveform
is unknown, is assumed to be SO noncircular with arbitrary
noncircular properties. In the steady state and for SO non-
circular SOI and/or interference, this new WL beamformer,
that is derived from an original orthogonal decomposition, is
shown to always improve the performance of both the well-
known Capon’s beamformer and a WL MVDR beamformer
introduced recently in the literature. This optimal WLMVDR
beamformer is first introduced and some of its performance
are analyzed. Then, several adaptive implementations of this
optimal WL beamformer are presented.

Index Terms— Noncircular, widely linear, interference,
beamforming, MVDR beamforming

1. INTRODUCTION

Conventional beamforming approaches aim at finding a linear
and time invariant (TI) complex filter w, such that its output
y(t) def= wHx(t) corresponds to a SO estimate of a SOI com-
ing from a particular direction and potentially corrupted by
interference plus background noise, where x(t) is the vector
of the complex envelopes of the signals observed at the output
of the sensors. Although SO optimal for stationary observa-
tions [1], whose complex envelopes are necessarily SO cir-
cular [2], this conventional approach becomes suboptimal for
nonstationary signals [1], omnipresent in radio communica-
tion contexts, whose complex envelope may also become SO
noncircular [2] such as BPSK, ASK, MSK or GMSK signals
for example. More precisely, for nonstationary observations,
the optimal complex filters become time variant [3], and un-
der some conditions of noncircularity [1], WL [4], i.e., of the
form y(t) = w1(t)Hx(t) + w2(t)Hx(t)∗.
Very recently, a TI WL MVDR beamformer has been in-

troduced and deeply analyzed in [5]. However, although more
powerful than the Capon’s beamformer for SO noncircular
interference, this WL beamformer remains suboptimal for a

SO noncircular SOI, since it does not exploit the SO noncir-
cularity of the latter. To overcome this limitation, the pur-
pose of this paper is to introduce the optimal TI WL MVDR
beamformer for the reception of an unknown SOI corrupted
by potentially SO noncircular background noise and interfer-
ence. The SOI, whose waveform is unknown, is assumed to
be SO noncircular with arbitrary noncircular properties. This
new WL MVDR beamformer, based on an original orthogo-
nal decomposition, takes into account the potential SO non-
circularity of both the SOI and interference. It is shown to al-
ways improve, in the steady state and for SO noncircular SOI
and/or interference, the performance of both the well-known
Capon’s beamformer and the WL MVDR beamformer intro-
duced in [5]. Several adaptive implementations of this new
WL beamformer are then presented assuming that both the
SO noncircularity and the steering vector of the SOI are not
necessarily known.

2. HYPOTHESES, DATA STATISTICS AND
PROBLEM FORMULATION

Let us consider an array ofN narrow-band sensors and denote
by x(t) the vector of complex amplitudes of the signals at the
output of these sensors. Each sensor is assumed to receive a
SOI corrupted by a total noise (potentially composed of inter-
ference and background noise). Under these assumptions, the
observation vector x(t) can be written as follows

x(t) = s(t) s + n(t), (1)

where s(t) and s correspond to the complex envelope, as-
sumed zero-mean and potentially SO noncircular, and the
steering vector, such that its first component is equal to one,
of the SOI respectively. The vector n(t) is the total noise
vector, assumed zero-mean, potentially SO noncircular and
statistically uncorrelated with s(t).
The SO statistics of the noncircular observation x(t) are

defined by

Rx
def= < E[x(t)x(t)H ] >= πsssH + Rn,

Cx
def= < E[x(t)x(t)T ] >= πsγsssT + Cn,

where < . > denotes the time-averaging operation, with
respect to the time index t, over the observation window,
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πs
def=< E[|s(t)|2] > is the time-averaged power of the

SOI received by the first sensor, γs
def=< E[s(t)2] > / <

E[|s(t)|2] >
def= |γs|e2iφs such that 0 ≤ |γs| ≤ 1, is the

time-averaged SO noncircularity coefficient of the SOI,
Rn

def=< E[n(t)n(t)H ] > and Cn
def=< E[n(t)n(t)T ] >.

In order to introduceWL filters in the following, we define
the extended observation vector by x̃(t) def= [x(t)T ,x(t)H ]T

and using (1) we obtain

x̃(t) = s(t)s̃1 + s(t)∗s̃2 + ñ(t) def= S̃ s̃(t) + ñ(t), (2)

where ñ(t) def= [n(t)T ,n(t)H ]T , s̃1
def= [sT ,0T

N ]T , s̃2
def=

[0T
N , sH ]T , S̃ def= [s̃1, s̃2] and s̃(t) def= [s(t), s(t)∗]T . The

SO statistics of x̃(t) considered in this paper correspond
to the time-averaged matrix Rx̃

def=< E[x̃(t)x̃(t)H ] >
given, under the previous assumptions, by Rx̃ = S̃Rs̃S̃H +
Rñ where Rs̃

def=< E[s̃(t)s̃(t)H ] > and where Rñ
def=<

E[ñ(t)ñ(t)H ] > can be written as

Rñ =
(

Rn Cn

C∗
n R∗

n

)
.

We consider a TI WL spatial filter w̃ def= [wT
1 ,wT

2 ]T whose
output is defined by

y(t) = w̃H x̃(t) = s(t)w̃H s̃1 + s(t)∗w̃H s̃2 + w̃H ñ(t). (3)

The problem addressed in this paper is to find the TI WL
MVDR spatial filter w̃ which generates the best SO estimate
of the SOI s(t), whose waveform and content are unknown.

3. OPTIMALWL BEAMFORMER NOT TAKING
INTO ACCOUNT SOI NONCIRCULARITY

As γs is unknown, a first philosophy is to built a WL MVDR
beamformer which does not require the knowledge or the es-
timation of this coefficient. In this context, an efficient way
to generate, in the output y(t), a non-null SOI without any
distortion whatever the correlation between s(t) and s(t)∗, is
to minimize the time-averaged output power w̃HRx̃w̃ under
the constraints:

w̃H s̃1 = 1 and w̃H s̃2 = 0.

The TI WL filter solution to this problem is the so-called WL
MVDR1 beamformer introduced and analyzed in [5] and de-
fined by

w̃MVDR1 = R−1
x̃ S̃[S̃HR−1

x̃ S̃]−1f , (4)

with f def= [1, 0]T . For a SO circular noise vector n(t), this
WL beamformer reduces to the well-known Capon’s MVDR
beamformer defined by

wCapon
def=

(
sHR−1

x s
)−1

R−1
x s, (5)

In the presence of SO noncircular interference, the WL
MVDR1 beamformer outperforms the Capon’s beamformer,
in terms of output SINR and number of interference sources
to be processed. Moreover, all the adaptive algorithms de-
veloped to implement the Capon’s beamformer can be easily
extended to this WL MVDR1 beamformer.
Finally, let us point out that as the WL MVDR1 beam-

former does not exploit the potential SO noncircularity of the
SOI, it does not allow for single antenna interference can-
cellation (SAIC) [6] in the presence of both rectilinear SOI
and interference. The WL MVDR beamformer introduced in
the next section aims precisely at overcoming this limitation
by taking into account the potential SO noncircularity of the
SOI.

4. OPTIMALWLMVDR BEAMFORMER TAKING
INTO ACCOUNT SOI NONCIRCULARITY

For γs �= 0, s(t)∗ is correlated with s(t) and contains both
a SOI and an interference component. To compute the SOI
component of s(t)∗, let us consider the Hilbert space of ran-
dom processes having a finite time-averaged power and fitted
with the inner product (u(t), v(t)) def=< E[u(t)v(t)∗] >. It
is then easy to compute the orthogonal projection of s(t)∗ on
s(t) for the previous inner product. This gives the following
orthogonal decomposition in this space

s(t)∗ = γ∗
ss(t) + [πs(1− |γ2

s |)]1/2s′(t), (6)

with < E[s(t)s′(t)∗] >= 0 and < E[|s′(t)|2] >= 1. De-
composition (6) shows that, for a given time-averaged use-
ful input power πs, the time-averaged power of the desired
signal component of s(t)∗ is equal to πs|γs|2 and increases
with |γs|. In particular for a rectilinear SOI for the receiver
(BPSK, ASK), γs = e2iφs , s(t)∗ = e−2iφss(t) and s(t)∗ to-
tally corresponds to the SOI, whereas for a SO circular SOI
(e.g., QPSK), γs = 0, s(t)∗ = π

1/2
s s′(t), and s(t)∗ totally

corresponds to an interference for the SOI. Using (6) in (2),
we obtain

x̃(t) = s(t) (s̃1 + γ∗
s s̃2)︸ ︷︷ ︸

s̃γ

+ s′(t)[πs(1− |γ2
s |)]1/2s̃2 + ñ(t)︸ ︷︷ ︸

ñγ(t)

def= s(t)s̃γ + ñγ(t) (7)

where s̃γ and ñγ(t) are the equivalent extended steering vec-
tor of the SOI, which now depends on γs, and the global noise
vector respectively for the extended observation vector x̃(t).
Using (7) into (3), we finally obtain

y(t) = w̃H x̃(t) = s(t)w̃H s̃γ + w̃H ñγ(t). (8)

From decomposition (8), we deduce that the optimal WL
MVDR beamformer, which optimally exploits the parameters
s and γs, corresponds to the WL filter w̃ which minimizes the
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time-averaged output power w̃HRx̃w̃, under the following
constraint:

w̃H s̃γ = 1. (9)
This WL MVDR beamformer, called MVDR2 in the follow-
ing, is defined by

w̃MVDR2

def= [s̃H
γ R−1

x̃ s̃γ ]−1R−1
x̃ s̃γ = [s̃H

γ R−1
ñγ

s̃γ ]−1R−1
ñγ

s̃γ ,
(10)

where the time-averaged first correlation matrixRñγ
of ñγ(t)

can be written from (7) as

Rñγ
= [πs(1− |γ2

s |)]s̃2s̃H
2 + Rñ.

This WL beamformer may thus be implemented from the
knowledge or the estimation of (s, γs) and either from the
observations x(t) or from both a total noise alone reference
n(t), when such a reference is available, and the knowledge of
πs. We verify that the beamformer w̃MVDR2 fits the Capon’s
beamformer (5) when both the SOI and the total noise are SO
circular (γs = 0, Cn = O). Finally note that for a rectilinear
SOI (|γs| = 1), this WL beamformer corresponds to the WL
spatial matched filter introduced in [6].
Equation (8) clearly displays the SOI and the global noise

uncorrelated parts of y(t). It is then straightforward to intro-
duce the SINR at the output of a WL filter w̃ defined by

SINR[w̃] def=
πs|w̃H s̃γ |2
w̃HRñγ

w̃
. (11)

It is then easy to prove that w̃MVDR2 maximizes this SINR
and is also proportional to w̃MMSE which minimizes the mean
square error

MSE[w̃] def=< E[|s(t)− w̃H x̃(t)|2] > . (12)

5. PERFORMANCE

5.1. SINR and MSE

From expressions (4), (5) and (10), it is possible to compute
the value of the SINR (11) at the output of the Capon, WL
MVDR1 and WL MVDR2 beamformers respectively. It is
easy to verify that these values are given by

SINRCapon = πssHR−1
n s,

SINRMVDR1 =
πs

fT [S̃HR−1
ñ S̃]−1f

,

SINRMVDR2 = πss̃H
γ R−1

nγ
s̃γ .

For a given source scenario, it is easy to compare these
values of SINR without any particular computations. In-
deed, wCapon, w̃MVDR1 and w̃MVDR2 , all minimize the
time-averaged output power w̃HRx̃w̃ but under different
constraints that satisfy

{w̃ = [wT
1 ,0T

N ]T ;wH
1 s = 1}

⊂ {w̃; w̃H s̃1 = 1 and w̃H s̃2 = 0} ⊂ {w̃; w̃H s̃γ = 1}.

Consequently, the inclusion principle implies that generally

SINRCapon ≤ SINRMVDR1 ≤ SINRMVDR2 . (13)

Using decomposition (8) and the general expressions (11) and
(12) of the SINR andMSE, the following relation between the
MSE and SINR criteria is easily proved.

MSE[w̃] = πs

(
|1− w̃H s̃γ |2 +

|w̃H s̃γ |2
SINR[w̃]

)
.

This relation is interesting since it shows that the WL filter w̃
which minimizes MSE[w̃] under the constraint w̃H s̃γ = 1, is
also the WL filter which maximizes SINR[w̃] under the same
constraint, which finally corresponds to w̃MVDR2 . This gives
in particular a physical meaning of both decomposition (6)
and SINR criterion. Finally, note that w̃MMSE and w̃MVDR2

that are collinear, generate the same output SINR, but not
the same time-averaged MMSE. Indeed, we straightforwardly
prove that

MSE[w̃MMSE] =
πs

1 + SINRMVDR2

, (14)
whereas

MSE[w̃MVDR2 ] =
1

sH
γ R−1

ñγ
sγ

=
πs

SINRMVDR2

, (15)

which is greater thanMSE[w̃MMSE] and which tends toward
MSE[w̃MMSE] as SINRMVDR2 � 1.

5.2. Processing capacity

Let us now consider the particular case where the total noise
n(t) is composed of P potentially SO noncircular interfer-
ence sources and a background SO circular noise n′(t). Un-
der these assumptions, the total noise vector n(t) is given by
n(t) =

∑P
p=1 jp(t)jp + n′(t), where jp(t) and jp denote the

waveform and the steering vector of interference p respec-
tively. (jp(t))p=1,...,P and n′(t) are supposed uncorrelated.
In a similar way as for the SOI, jp(t)∗ can be decomposed as
follows

jp(t)∗ = γ∗
pjp(t) + [πp(1− |γ2

p |)]1/2j′p(t)

where πp, γp and j′p(t) are the power, the SO noncircularity
coefficient and the noise part of jp(t), defined in a similar way
as for the SOI. Consequently, the global noise ñγ(t) defined
in (7) can be written as (16) where j̃p,γ

def= j̃p1 + γ∗
p j̃p2 with

j̃p1

def= (jTp ,0T
N )T , j̃p2

def= (0T
N , jHp )T

ñγ(t) = s′(t)[πs(1− |γs|)]1/2s̃2

+
P∑

p=1

(
jp(t)̃jp,γ +j′p(t)[πp(1−|γ2

p |)]1/2j̃p2

)
+ñ′(t). (16)

We deduce from this decomposition, that each interference p
which is non rectilinear (|γp| �= 1) generates two uncorrelated
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components in the global noise ñγ(t), whereas a rectilinear
interference (|γp| = 1), only generates one component. In a
same way, a non rectilinear SOI generates one interference,
whereas a rectilinear SOI does not generate any component
in ñγ(t).
From this result, we easily deduce that the maximal num-

ber of interference that may be processed by the WLMVDR2

beamformer is defined byPmax = 2(N−1)−Pnr+δ(1−|γs|),
where Pnr, such that Pnr ≤ Pmax, is the number of nonrecti-
linear interference and δ is the Kronecker symbol. In partic-
ular, for a rectilinear SOI, the WL MVDR2 may reject up to
2N − 1 rectilinear interference and has the ability to perform
SAIC (Pmax = 1 for N = 1), whereas for nonrectilinear SOI
Pmax = 2(N − 1).

5.3. Illustrative examples
To briefly illustrate (13) and the interest of w̃MVDR2 , we con-
sider an array ofN = 2 sensors equispaced half a wavelength
apart and we assume that the SOI, assumed to be either BPSK
or QPSK, is corrupted by a BPSK interference plus a SO cir-
cular background noise. The direction of arrival (DOA) θs,
the phase φs and the SNR of the SOI are such that θs = 0o,
φs = 0o and SNR = 10 dB, whereas the SNR of the inter-
ference, called Interference to noise ratio (INR), is such that
INR = 20 dB. Under these assumptions, Fig.1 that exhibits
the SINR as a function of the interference DOA, shows an
increasing SINRMVDR2 with respect to SINRMVDR1 as the
phase diversity φ between the BPSK SOI and the interference
increases, due to the optimal exploitation of γs by w̃MVDR2 .
We also note the better performance obtained for a BPSK SOI
with respect to a QPSK one, despite the fact that the perfor-
mance of the latter remains better than those at the output of
MVDR1.
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Fig.1 SINRCapon, SINRMVDR1 and SINRMVDR2 as a function of the
interference DOA θ1 for both BPSK and QPSK SOI.

6. IMPLEMENTATIONS

When s and γs are known, the WL MVDR2 beamformer can
be estimated from K snapshots x(kTs) by the sample matrix
inverse (SMI) approach consisting to replace the statisticsRx̃

by the empirical estimate R̂x̃
def= 1

K

∑K
k=1 x̃(kTs)x̃(kTs)H

in (10), where Ts is the sample period. Note that the SMI im-
plementation of the WL MVDR1 and MVDR2 beamformers
have the same order of complexity.
When both s and γs are unknown, the extended steer-

ing vector s̃γ can be estimated using a training sequence
if available, or a blind identification approach. With a
training sequence, s̃γ can be estimated by the LS estimatễsγ = r̂−1

s̃ R̂x̃,s derived from decomposition (7), with r̂s̃
def=

1
K

∑K
k=1 |s(kTs)|2 and R̂x̃,s

def= 1
K

∑K
k=1 x̃(kTs)s∗(kTs).

This gives an estimate ̂̃wMVDR2 = [̂̃s
H

γ R̂−1
x̃

̂̃sγ ]−1R̂−1
x̃

̂̃sγ

which is proportional to the usual MMSE estimate R̂−1
x̃ R̂x̃,s.

When a training sequence is not a priori available, s̃γ can
be blindly estimated (up to a source ambiguity) from a blind
identification approach, such as the JADE algorithm [7], ap-
plied to the extended snapshots x̃(kTs). Note that this ap-
proach is only valid for a rectilinear SOI. Fig.2 shows the
variations of the SINR at the output of the 3 previous es-
timated filters as a function of the number of snapshots for
the scenario of Fig.1, for a BPSK SOI and for φ = 90o and
θ1 = 45o. Note the fast convergence of the 3 estimated filters.
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Fig.2 SINR given by the MVDR2 beamformer estimated by (1) extended
SMI, (2) training sequence and (3) JADE approaches as a function ofK.
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