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ABSTRACT

Complex random signals play an increasingly important role in ar-
ray, communications, and biomedical signal processing and related
fields. However, the mathematical foundations of complex-valued
signals and tools developed for handling them are scattered in litera-
ture. There appears to be a need for a concise, unified, and rigorous
treatment of such topics. In this paper such a treatment is provided.
Moreover, we establish connections between seemingly unrelated
objects such as real differentiability and circularity. In addition, a
novel complex-valued extension of Taylor series is presented and a
measure for circularity is proposed.

Index Terms— complex random variables, complex moments,
R-differentiability, circularity, Taylor’s series

1. INTRODUCTION

As the applications of complex random signals are becoming in-
creasingly more advanced, it is evident that simplistic adaptation of
techniques developed for real-valued signals to the complex-valued
case may not be adequate, or may lead to suboptimal results or in-
tractable calculations. This issue is now widely recognized in the
signal processing research community. Unfortunately, the obtained
fundamental results are scattered in open literature. Our intention is
to provide a rigorous and unified treatment of properties of complex-
valued random signals and related processing tools

We introduce a novel complex-valued extension of the Taylor
series, we establish relationship between the moments, characteristic
functions and cumulants, and finally we propose a novel measure
of circularity. For the recent work in the area of complex valued
random signals, see, e.g., [1, 2, 3] and references therein.

The rest of this paper is organized as follows. In Section 2
the preliminaries of the complex field are considered, and the linear
maps are revisited. Linearity considerations lead to two types of dif-
ferention in the complex domain. This is treated in Section 3, where
it is also derived a generalization of the standard complex Taylor’s
series along with important specific cases. In Section 4 complex
random variables are introduced, and the existence properties of the
fundamental expectation operator are derived. It is shown in Sec-
tion 5 how the results form the previous sections lead to derivation
and characterization of complex random variable quantities such as
moments, cumulants, and circularity. Finally, Section 6 concludes
the paper. Due to the lack of space we have omitted some of the
proofs, which are available from the authors by a request.

∗ The two first authors have equally contributed to the technical content
of the paper. † This work has been supported by the Academy of Finland.

2. COMPLEX FIELD AND FUNCTIONS

Let R denote the set of real numbers. The set of complex numbers,
denoted by C, is the plane R × R = R

2 equipped with complex
addition and complex multiplication making it the complex field. The
complex conjugate of z = (x, y) = x + jy ∈ C is defined as

z∗ � (x,−y) = x − jy. With this notation we can write the real
part and the imaginary part of a complex number z as Re(z) �
x = 1

2
(z + z∗) and Im(z) � y = j

2
(z∗ − z), respectively. The

modulus of z = x + jy is defined as the nonnegative real number

|z| ��x2 + y2 =
√

zz∗.

The complex exponential, denoted by exp(z), is defined as

the complex number exp(z) � exp(x){cos(y) + j sin(y)},
where exp(x) for real-valued x denotes the usual exponential
function. Any nonzero complex number has a polar represen-
tation, z = |z| exp(jθ), where θ = arg(z) is called the argu-
ment of z. The unique argument θ = Arg(z) on the interval
−π ≤ θ < π is called the principal argument. The complex loga-
rithm of z �= 0, denoted by log(z), is defined as the complex number

log(z) � log |z|+ jArg(z) + j2nπ where n is an arbitrary integer.
The particular value of the logarithm given by log |z| + jArg(z) is
called the principal logarithm and will be denoted by Log(z).

The open disk with center c = a + jb ∈ C and radius r > 0
is defined as B(c, r) � {z ∈ C : |z − c| < r}. Throughout the
paper U will stand for an open set in C, i.e. for each c ∈ U there
exists r > 0 such that B(c, r) ⊂ U . A function f of the complex
variable z = x + jy is a rule that assigns to each value z in U
one and only one complex number w = u + jv � f(z). The real
and imaginary part of the function f(z) are real-valued functions of

real variables x and y, i.e., u = u(x, y) � u(z) : U → R and

v = v(x, y) � v(z) : U → R.

Because C is an R-vector space as well as a C-vector space,
there are two kinds of linear functions. A function L : C → C is
called R-linear, if L(az1 +bz2) = aL(z1)+bL(z2) for all z1, z2 ∈
C, and scalars a, b ∈ R. If the defining equation is valid also for
all complex scalars a, b ∈ C, then L is C-linear. For example, the
complex conjugation z �→ z∗ is R-linear but not C-linear.

It is easily seen that a function L is R-linear if and only if
L(z) = αz + βz∗, α, β ∈ C, and a function T is C-linear if and
only T (z) = αz. This result can be generalized to multivariate
mappings C

n → C
p, and the form of R-linear mappings remains

the same: it is the sum of two C-linear mappings, the first one acting
on the argument of the function and the latter on the conjugate of
the argument. Therefore, the well-known estimation technique in
signal processing known as widely linear estimation [4] is in fact
estimation with respect to R-linear estimators instead of the C-linear
ones used in standard linear estimation of complex data. Hence, we
prefer the name R-linear estimation for the technique.
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3. CR-CALCULUS AND TAYLOR’S THEOREM

The essential idea of differentiation is linearization of a function
around a point. Since there two types of linear mappings in C,
there are also two types of differentiations. The less restrictive is
obtained by linearization with respect to R-linear functions. A func-
tion f : U → C is said to be R-differentiable at c ∈ U , if there exists
an R-linear function L : C → C, called R-differential, such that

f(c + h)− f(c) = L(h) + |h|ε(h) and lim
|h|→0

ε(h) = 0.

The function f is R-differentiable, if it is R-differentiable at every
point c ∈ U . Now the differential L is C-linear if and only if f is C-
differentiable, i.e., f has the usual complex derivative (C-derivative)
defined as the differential quotient limit.

Functions that are C-differentiable in a domain are called holo-
morphic, and they are the subject of the standard complex analy-
sis. However, C-differentiability is too stringent condition for the
application domain targeted in this paper. Namely, many functions
related to random variables and optimization are real-valued, and
only real-valued holomorphic functions are constants. Hence, we
are mainly interested in developing a useful framework around R-
differentiation.

Now the existence of the (unique) differential L(h) implies that

the complex partial derivatives (cpd) ∂f
∂x

(c) � ∂u
∂x

(c) + j ∂v
∂x

(c) and
∂f
∂y

(c) � ∂u
∂y

(c) + j ∂v
∂y

(c) exist at c. Furthermore,

L(h) =
∂f

∂x
(c)Re(h) +

∂f

∂y
(c)Im(h)

=
∂f

∂z
(c)h +

∂f

∂z∗ (c)h∗,
(1)

where the mixed cpd’s

∂f

∂z
(c) � 1

2

�
∂f

∂x
(c)− j

∂f

∂y
(c)

�

and
∂f

∂z∗ (c) � 1

2

�
∂f

∂x
(c) + j

∂f

∂y
(c)

�

are called [5] the R-derivative and the conjugate R-derivative,
respectively. The differential calculus based on these operators is
known as Wirtinger calculus [6, 1], or, as we prefer, the CR-calculus
[5]. The variables z and z∗ are treated as though they were indepen-
dent variables, and the usefulness of these operators stem from the
fact that they follow formally the same sum, product, and quotient
rules as the ordinary partial differentiation. The chain rules read as
follows:

∂f ◦ g

∂z
(c) =

∂f

∂z

�
g(c)

� · ∂g

∂z
(c) +

∂f

∂z∗
�
g(c)

� · ∂g∗

∂z
(c),

∂f ◦ g

∂z∗ (c) =
∂f

∂z

�
g(c)

� · ∂g

∂z∗ (c) +
∂f

∂z∗
�
g(c)

� · ∂g∗

∂z∗ (c).

The CR-calculus extends easily to functions with several variables
by the multivariate extension of the differential property (1). The
literature about this multivariate extension is very scarce, however,
see [5, 7, 8].

As with the usual partial derivatives, it is possible to have higher
order R-derivatives. Functions with continuous R-derivatives of or-
der m in U are denoted by Cm(U). We are ready to state the main
result in this section.

Theorem 1 (Taylor’s R-theorem) Assume that f ∈ Cm+1(U).
Then

f(c + h)− f(c)

=

m�
p=1

p�
n=0

h∗nhp−n

n!(p− n)!

∂pf

∂zp−n∂z∗n
(c) + |h|mε(h)

(2)

and lim|h|→0 ε(h) = 0.

An infinitenely continuously differentiable function f is real ana-
lytic, if the power series in (2) converges.

An import special case occurs when ∂f
∂z∗ ≡ 0. This condition is

easily seen to be equivalent to Cauchy-Riemann equations. There-
fore, f is holomorphic, infinitely C-differentiable, and the power
series (2) converges, i.e., f is complex analytic. Taylor’s series takes
now the usual form from the complex analysis: f(c + h)− f(c) =�∞

p=1
hp

p!
∂pf
∂zp (c).

Another special case occurs when f is R-differentiable at c =
0, and further independent of Arg(z). Now, since f can be writ-
ten as a function of |z|2 alone, it follows from the chain rules that
∂p+qf
∂zpz∗q (0) = 0 whenever p �= q. Hence, if f ∈ C2m+1(U), then
Eq. (2) reduces to

f(h)− f(0) =

m�
p=1

|h|2p

(p!)24p
Δpf(0) + |h|2mε(h), (3)

where the differential polynomial Δ � 4 ∂
∂z∗

∂f
∂z

= 4 ∂
∂z

∂f
∂z∗ =

∂2

∂x2 + ∂2

∂y2 is known [6] as the Laplace operator playing a crucial

role in analysis of harmonic (or potential) functions.

4. COMPLEX RANDOM VARIABLES AND THE
EXPECTATION

A complex random variable (r.v.) is defined by Z � X + jY , where
X and Y are real r.v.’s. The distribution of a complex r.v. Z is
identified with the joint (real bivariate) distribution of X and Y ,

FZ(z) = P (Z ≤ z) � P (X ≤ x, Y ≤ y) = F(X,Y )(x, y),

where the functions FZ(z) and F(X,Y )(x, y) are the cumulative
distribution function (cdf) of the complex r.v. Z and the joint
distribution function of the bivariate random vector (X, Y ), re-
spectively. The probability density function (pdf), if it exists,
is the nonnegative function fZ(z) � f(X,Y )(x, y) such that

F(X,Y )(x, y) =
� y

−∞
� x

−∞ f(X,Y )(x, y)dxdy for all (x, y) ∈ R
2.

Then 2j
�

∂2FZ
∂z2 (z)− ∂2FZ

∂z∗2 (z)
�

=
∂2F(X,Y )

∂x∂y
(x, y) exists and equals

fZ(z) almost everywhere.

The mean (or the expectation) of Z, defined as EZ

�
Z
	

�
EX

�
X
	
+ j EY

�
Y
	

is said to exist if both real expectations EX

�
X
	

and EY

�
Y
	

exist, i.e., if the corresponding integrals are defined and
finite. It follows from the definition of integration that integrabil-
ity and absolute integrability are equivalent for a real r.v. X , i.e.,
EX

�
X
	

exists if and only if EX

�|X|	 exist. Thus, the existence of

EZ

�
Z
	

implies the existence of EX

�|X|	 and EY

�|Y |	. For a real

r.v. X it is well-known that |EX

�
X
	| ≤ EX

�|X|	. The same holds

for complex r.v.’s. Explicitly, EZ

�
Z
	

exists if and only if EZ

�|Z|	
exists, and if EZ

�
f(Z)

	
exists for a Borel measurable function

f : C → C, then |EZ

�
f(Z)

	| ≤ EZ

�|f(Z)|	.
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For the characteristic function (cf) we may write

ΦZ(z) � Φ(X,Y )(x, y) = E(X,Y )

�
exp{j(xX + yY )}�

= EZ

�
exp{jRe(z∗Z)}� = EZ

�
exp{ j

2
(z∗Z + zZ∗)}�,

and the second characteristic function (scf) is defined in the neigh-
borhood of zero by ΨZ(z) � Log[ΦZ(z)].

5. MOMENTS, CUMULANTS, AND CIRCULARITY

A complex r.v. Z has p + 1 p:th-order moments defined by

αn;m � EZ

�
ZnZ∗m�,

where n and m are natural numbers such that p = n+m. Symmetric
moments are redundant in the sense that αm;n = α∗

n;m. If Z is real
all p:th-order moments coincide. The q:th-order absolute moment
is defined by βq � EZ

�|Z|q� for all rational numbers q. Clearly
β2n = αn;n. In an analogous fashion, the quantity defined by

αn;m � EZ

�{Z − EZ

�
Z
�}n{Z − EZ

�
Z
�}∗m�

is known as the p:th-order central moment and β
q

� EZ

�|Z −
EZ

�
Z
�|q� as the q:th-order absolute central moment. Again there

are p + 1 different central p:th-order moments. The 2nd-order cen-
tral moment β

2
is called the variance of Z and denoted by var(Z)

whereas the 2nd-order central moment α2;0 is the the pseudo-
variance [9] of Z and it is denoted by pvar(Z). It can be shown that
if a p:th-order moment exists, then all moments of order p′ ≤ p ex-
ist. Moreover, we have |αn;m| ≤ βn+m. Now there is an important
relationship between moments and cf’s [10] given in the following
theorem.

Theorem 2 If a p:th order moment of a complex r.v. Z exists, then
the cf ΦZ is p times continuously differentiable in C, and, moreover,

∂m+nΦZ

∂zm∂z∗n
(z) =

� j

2

�m+n

EZ

�
ZnZ∗m exp(jRe(z∗Z))

�

for all natural numbers m, n such that m + n ≤ p. Especially,

αn;m =

�
2

j

�m+n
∂m+nΦZ

∂zm∂z∗n
(0). (4)

Conversely, if the partial derivative ∂m+nΦZ
∂zm∂z∗n (0) of the order p =

m + n exists, then all moments of order ≤ p, if p is even, and all
moments of order < p, if p is odd, exist.

This gives together with the Taylor’s R-series (2) at zero an expan-
sion for the characteristic function.

Corollary 1 If a complex r.v. Z has a finite p:th-order moment,
then, as z → 0,

ΦZ(z) = 1 +

p�
m=1

� j

2

�m
m�

n=0

z∗nzm−n

n!(m− n)!
αn;m−n + o(|z|p).

As in the real r.v. case, besides moments it is useful to define
a closely related concept, namely cumulants. The complex cumu-
lant of order p = n + m, denoted by κn;m, is obtained [10] as the
moments in Eq. (4), but using the scf instead of the cf. Namely,

κn;m �
�

2

j

�m+n
∂m+n ΨZ

∂zm∂z∗n
(0).

Again there are p + 1 cumulants κn;m of order p, and symmetric
cumulants are redundant in the sense that κn;m = κ∗

m;n. Since the
existence relations follow from the differentiation, they are the same
as in the case of moments. The symmetric cumulant κn;n is called
the absolute (or central) cumulant of order 2n.

The usefulness of cumulants stems from the fact that the scf is
additive for independent r.v.’s. That is, if r.v.’s Z1 and Z2 are inde-
pendent, then ΨZ1+Z2(z) = ΨZ1(z) + ΨZ2(z). This property is
preserved for the cumulants as the differentiation is a linear opera-
tion.

For the estimation purposes, it is important to know the alge-
braic relation between cumulants and moments. This relationship
was introduced in [11] (see also [10]) in an ad-hoc manner by di-
rectly substituting Z and Z∗ into a cumulant operator derived for the
cumulants of real random vectors. However, the formula holds also
for complex r.v.’s, and it can be rigorously proved by extending the
underlying Faá di Bruno’s formula [12] to complex R-derivatives.
This also gives the explicit formulas for the relationship between
multivariate complex cumulants and moments. However, we do not
pursue this issue here.

A complex r.v. Z is circular [13] if for any real α, the r.v.’s
Z = X + jY and exp(jα)Z have the same distribution. In other
words, Z is circular if the joint distribution of X and Y is spherically
symmetric. It follows directly from the results in [14] that if a r.v.
Z = |Z| exp(jΘ) is circular, then a uniformly on [0, 2π) distributed
r.v. Θ and a positive r.v. |Z| are independent. Furthermore, the cf
of a circular r.v. depends only on |z|2, and therefore, assuming the
moments exist, we can apply the specific case (3) of Taylor’s R-
theorem to the (s)cf of the r.v Z. It follows that all offcentric (i.e.,
nonabsolute) moments (and cumulants) are identically zero.

Since much of the classical signal processing and communica-
tions work in the complex domain has assumed circular r.v.’s, ab-
solute moments (and cumulants) have dominated the literature until
recently. Recent literature, e.g. [3, 2, 1, 15], has focused on a weaker
assumption than circularity. Namely, instead of presuming that r.v’s
are fully circular, one only assumes that the second order offcen-
tric moments do not vanish, i.e., r.v.’s are assumed to improper [9].
However, since there is no a priori reason to assume that the higher
order offcentric moments vanish if the signal is known to be noncir-
cular, also higher order offcentric moments need to be considered for
the optimal performance. For testing circularity, a generalized like-
lihood ratio was considered in [16]. Another circularity measure is
obtained by calculating the difference between the cf and its circular
approximation (3):

δZ(z) �
�����ΦZ(z)− 1−

p�
n=1

�
−1

4

�n
1

n!2
|z|2nβn

����� ,

where p is the approximation order and δZ(z) is evaluated on appro-
priate points z ∈ C. We will consider this in a future work.

6. CONCLUSIONS

We provided a rigorous and unified treatment of properties of
complex-valued random signals and related processing tools. A
novel complex-valued extension of the Taylor series was introduced.
We establish relationship between the moments, characteristic func-
tions and cumulants, and finally proposed a novel measure of circu-
larity.
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A. PROOFS

Proof of Theorem 1. Denote hx = Re(h) and hy = Im(h). Since
f = u + jv ∈ Cm+1(U), partial derivatives of u and v up to order

m are continuous in U by definition, which also implies that u and
v posses m:th-order Taylor series expansion

u(c + h)− u(c) =

m�
p=1

1

p!

p�
n=0

�
p

n

�
hp−n

x hn
y

∂pu

∂xp−n∂yn
(c)

+ |h|mεu(h),

v(c + h)− v(c) =

m�
p=1

1

p!

p�
n=0

�
p

n

�
hp−n

x hn
y

∂pv

∂xp−n∂yn
(c)

+ |h|mεv(h),

where εu(h) → 0 and εv(h) → 0 as |h| =
�

h2
x + h2

y → 0.
Therefore we now have that

f(c + h)− f(c) = [u(c + h)− u(c)] + j[v(c + h)− v(c)]

=

m�
p=1

1

p!

p�
n=0

�
p

n

�
hp−n

x hn
y

∂p(u + jv)

∂xp−n∂yn
(c)

+ |h|m[εu(h) + jεv(h)]

=

m�
p=1

1

p!

p�
n=0

�
p

n

�
hp−nh∗n ∂pf

∂zp−n∂z∗n
(c) + |h|mε(h),

where ε � εu + jεv → 0 as |h| → 0. The last identity follows by a
straightforward application of the binomial theorem to the operators
(hx

∂
∂x

+hy
∂

∂y
)p and (h ∂

∂z
+h∗ ∂

∂z∗ )p. Also observe that
�

p
n

�
/p! =

1/[n!(p− n)!].
Proof of Theorem 2. For the first part, notice that all absolute mo-
ments of orders p′ ≤ p exist. Let h = hx + jhy . Now

ΦZ(c + hx)− ΦZ(c)

hx
= EZ

�exp(jhxX)− 1

hx
exp(jRe(c∗Z))

�
and

ΦZ(c + jhy)− ΦZ(c)

hy
= EZ

�exp(jhyY )− 1

hy
exp(jRe(c∗Z))

�
.

Since for all c ∈ C, hx ∈ R			exp(jhxx)− 1

hx
exp(jRe(c∗Z))

			 ≤ |x| ≤ |z|,
following from the result that | exp(jt)− 1| ≤ |t| for all t ∈ R, and
similarly for hy ∈ R, it follows from Lebesgue dominated conver-
gence that

∂ΦZ

∂x
(c) = j EZ

�
X exp(jRe(c∗Z))

�
and

∂ΦZ

∂y
(c) = j EZ

�
Y exp(jRe(c∗Z))

�
.

Hence, by the definition of the complex partial derivatives

∂ΦZ

∂z
(c) =


 j

2

�
EZ

�
Z∗ exp(jRe(c∗Z))

�
and

∂ΦZ

∂z∗ (c) =

 j

2

�
EZ

�
Z exp(jRe(c∗Z))

�
.

The general case follows by induction, and the claim about the mo-
ments with the substitution c = 0.

For the second part of the theorem, the existence of the p:th-
order cpd implies the existence of the real partial derivatives of the
order p. Hence, the real moments αk(X) and αk(Y ) exist for k ≤ p
if p is even and for k < p if p is odd. This implies the existence of βp

for p even and βp−1 for p odd, and therefore also all other moments
as claimed.
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