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ABSTRACT

Reverberant environments pose a challenge to speech acqui-
sition from distant microphones. Approaches using micro-
phone arrays have met with limited success. Recent research
using audio-visual sensors for tasks such as speaker localiza-
tion has shown improvement over traditional audio-only ap-
proaches. Using computer vision techniques we can estimate
the orientation of the speaker’s head in addition to the location
of the speaker. In this paper we study the utility of using the
head pose information for effective beamforming and clean
speech acquisition from distant microphones. The improve-
ments in speech recognition accuracy relative to that of a close
talking microphone are presented and the results provide suf-
ficient motivation for incorporating head pose information in
beamforming techniques.

Index Terms— Speech enhancement, audio-visual fu-
sion, speech recognition, head-pose estimation, intelligent
spaces, human-computer interface

1. INTRODUCTION

Speech acquisition from distant microphones in a reverberant
environment is a challenging task [1][2]. The signal at the
distant microphone is distorted due to echoes and techniques
based on SNR measurements cannot be employed to select
the best set of microphones. Existing approaches to acquiring
clean speech from distant microphones include microphone
array based beam-forming techniques. In such systems, re-
cent research has focussed on augmenting the microphone ar-
ray based system with information from video cameras which
are used to track the speakers and provide accurate location
information. The sensitivity of the speech acquisition systems
to location errors has been studied in [3]. In this paper we ex-
plore the sensitivity of distant speech acquisition systems to
the orientation of the speaker’s head in addition to speaker lo-
cation. Speech recognition accuracy can be significantly im-
proved by using the correct beamforming parameters for the
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particular location and the orientation of the speaker’s head.
The orientation of the speaker’s head can be estimated using
both the audio and video modalities. An audio-visual head
pose estimation system is presented in [4]. A detailed survey
of video-only head pose estimation can be found in [5]. In
our system we use the head orientation estimates and location
estimates from the video modality, to improve the quality of
speech enhancement by the microphone array. We adopt a
delay, filter and sum strategy and report the improvement in
the speech recognition accuracy on a large vocabulary speaker
dependent speech recognition task.

2. ROOM ACOUSTIC TRANSFER FUNCTION

Let microphone i be at location (x;, y;, z;) and the head of the
speaker be centered at (xs,ys, zs) and oriented in the direc-
tion (¢, 65) in the polar co-ordinates relative to the original
co-ordinates. The location and directivity of the microphones
is assumed to fixed and we do not model changes in those pa-
rameters. Let us assume that the source signal s(¢), measured
using a close talking microphone, encounters a channel whose
impulse response is h;. The transfer function corresponding
to this channel will be referred to as the room acoustic transfer
function. If we represent the signal received at microphone ¢
by yi(t), then, y;(t) = s(t) * h;. In Figure 1, we see an ex-
ample of h;(t) for two different source locations.

We claim, h; depends on x;, y;, 2i, Ts, Ys, 2s, ¢s and Os.
Since the microphone is assumed to be fixed, we could reduce
the dependence to g, ys, 25, ¢s and ;. It is easy to see why
this is indeed the case. The location of the speaker relative
to the microphone and the room determines the relative de-
lay and amplitude of the reflections from the walls and other
surfaces in the room, contributing to the tail of the impulse
function. The human vocal tract acts as a directed source.
This is especially true for frequencies greater than 4kHz. In
[4], the head radiation pattern is discussed in detail. From the
directional nature of head radiation pattern one can deduce
the dependence of the room acoustic transfer function on ¢;.
In Figure 2, the dependence of h; on the orientation of the
speaker’s head confirms this deduction. In the next Section
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Fig. 1. Room acoustic impulse response, for two source loca-
tions 6” apart. The impulse response is estimated by assuming
that s(t), measured using a close talking microphone, is the
input and h;(t), the signal received at microphone ¢, is the
output of the channel. The same measurements are then re-
peated for another location of the speaker, 6” away from the
first.

we present a framework to utilize the head pose information
for effective speech acquisition from distant microphones.
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Fig. 2. Room acoustic impulse response, for same location

but three different speaker head orientations, estimated as in

Figure 1. Note that the impulses responses are very different,

indicating the sensitivity to head pose.
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3. SPEECH ACQUISITION FROM DISTANT
MICROPHONES

Current research on speech acquisition using distant mi-
crophones implicitly or explicitly model speaker location.
Speaker location is implicitly used in aligning the signals
from different microphones with one another [6]. In more
advanced schemes, in addition to the proper alignment of
the signals using the appropriate delay, location specific pa-
rameters are used in beamforming [3]. However, to date, no
research has included the orientation of the speaker’s head in
the beamforming techniques. This is mainly due to the diffi-
culty of estimating the orientation of the head. Using video,
however, we can estimate the head pose of the speaker[5] and
use this information in acquiring clean speech from distant
microphones. This can be done in one of the following ways,

e Use specific microphone array beamformer coefficients
for the current location and orientation of the speaker.

e Use a subset of the microphones for acquiring the
speech by selecting those microphones that have a
strong direct path from the speaker.

e Use the best microphone for the present speaker loca-
tion and orientation.

Note that the later options are specific instances of the ear-
lier ones. However, they are also easier to implement in prac-
tise. Thus there is a trade-off between generality and conve-
nience. In Section 4, we present results that provide practical
insights to this trade-off. The other issue that is addressed in
Section 4 is that of the sensitivity of automatic speech recog-
nition to the orientation of the speaker’s head in each of the
three situations considered above. This allows us to imple-
ment a practical system by training beamformers for partic-
ular orientations of the speaker’s head. In more specific in-
stances, such as meeting rooms, the participants tend to face
each other while speaking and this would allow the training
of beamformers for these particular cases. These cases are
also explored in Section 4. Also note that energy/SNR based
selection of the "best” microphones does not convey the same
information as a microphone that has a dominant direct path
and register clearer signals from the speaker.

4. COMPUTATIONAL FRAMEWORK AND
ALGORITHMS

In Figure 3, we present the framework of our proposed
scheme. The configuration of the sensors and the layout
of the room are shown in 4
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Fig. 3. The overall system flowchart.

4.1. Audio-visual person tracking

The localization of speaker is based on our earlier work. We
refer the reader to [7] for details. The audio localization in-
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cludes the time difference of arrival (TDOA )estimation as a
first step and these TDOA estimates are used in the beam-
former for aligning the signals from different microphones.

4.2. Audio-visual head pose estimation

In section 1, we discussed some aspects of audio-visual head
pose estimation. Our video head pose estimation algorithm
using calibrated video cameras is based on the algorithm dis-
cussed in [8]. The audio head pose estimation is not incorpo-
rated in the present system, but could be a future addition.

4.3. Filter and sum beamformer

In our experiments we use a filter and sum beamformer to
reconstruct the speech signal from the distant microphones .
The signal s;(¢) from the ith microphone is delayed by the
appropriate delay 7; to align all the microphones with one
another. During the training phase, they are aligned with a
reference microphone s,.(¢) that is placed close to the speaker
and the filter taps are trained by a stochastic gradient descent
algorithm. Note that by explicitly constraining a subset of
the filters to have all zero taps, we can select a subset of the
microphones. And in the extreme case, select only one of
the microphones. These cases correspond to the three options
mentioned in Section 3

4.4. Automatic Speech Recognition

A commercially available speech recognition software, the
dragon naturally speaking system is used for recognizing the
acquired speech signal. The recognition system is adapted for
each speaker separately, using a close talking microphone.
This is the same microphone used as the reference micro-
phone in training the beamformer taps (Section 4.3). The re-
sults correspond to a person dependent large vocabulary con-
tinuous speech recognition task based on the standard dicta-
tion mode of the speech recognizer.

5. EXPERIMENTAL EVALUATION

In this Section we describe the experimental setup in the
Smartspace lab at UCSD. We present the details of the sys-
tem used to evaluate the theory presented above. The results
presented in Section 5.1 are from this setup. Figure 4 shows
the layout of the room in which the audio-visual system is de-
ployed. There are 2 rectilinear cameras and 8 omnidirectional
microphones deployed in the room as shown in Figure 4. The
cameras and microphones are calibrated with respect to the
room co-ordinates. The setup is close to a typical meeting
with 4 participants and a presenter. Thus each participant has
4 foci of attention, corresponding to the 4 other participants
in the meeting. For each orientation of the speaker, corre-
sponding to the speaker facing one of these foci, we present
the following results.
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Fig. 4. Layout of the audio-visual testbed at the Smartspace
lab at UCSD.

5.1. Results

e Case A: A filter and sum beamformer is trained us-
ing all 8 microphones for that particular orientation and
speaker location.

e Case B: A filter and sum beamformer is trained using
a subset of microphones “'in front of” the speaker, for
that orientation.

e Case C: The single best microphone, based on speech
recognition accuracy, is selected and the signal is di-
rectly used for speech recognition.

The baseline results to compare the performance of our
scheme are as follows.

e Case D: Close talking microphone.

e Case E: A filter and sum beamformer is trained using
all 8 microphones, with the training data including all
possible orientations at the given speaker location (ori-
entation agnostic).

e Case F: A filter and sum beamformer is trained using all
8 microphones for a “forward” orientation at the given
speaker location.

The results are presented in Table 1. From these results,
it is clear that by training the beamformer for particular head
orientations in any of the three cases A, B, C, one can achieve
an improvement over cases E and F.

In Figure 5, we present the results of head orientation mis-
match on the speech recognition accuracy. The baseline for
comparison is the accuracy of the close-talking microphone.
Then there is the beamformer trained for the correct orienta-
tion of the speaker along with the beamformer trained for the
nominal orientation (angle zero) and used for other orienta-
tions of the head. From this we can conclude that using the
right head orientation in selecting the beamformer improves
the speech recognition accuracy by 10% in some cases.
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Table 1. Comparisons of speech recognition accuracies for the beamformers described above. Note that the first three cases
require the estimation of the head pose of the speaker, the last two cases represent the best one can do in the absence of such

information.
Location \ Case A Case B Case C \ Case D \ Case E \ Case F ‘
With head pose Baseline | Nohead pose
1 85% 87% 85% 90 % 77% 78%
2 84% 85% 84% 91% 78% 77%
3 81% 82% 81% 85% 72% 71%
4 85% 87% 85% 90 % 77% 78%
95 ‘ ‘ ‘ ‘ ‘ ‘ ‘ modal information fusion using the iterative decoding al-
—_—~ gorithm and its application to audio-visual speech recog-
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Fig. 5. Sensitivity of the speech recognition task to head ori-
entation mismatch.

6. CONCLUDING REMARKS
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We have presented an audio-visual system to effectively ac-
quire speech signals from far-field microphones in a meeting
room scenario and demonstrated the improvement in speech
recognition accuracy obtained by training beamformers for
particular head pose of the speaker. In the more general prob-
lems, where the speakers are not constrained to occupy cer-
tain locations and face particular directions as in a meeting
room, there are open issues that have to be addressed regard-
ing the practicality of storing and using different beamform-
ers for different positions and speaker head orientations. We
are working towards reducing the constraints in our system
and demonstrate the improvement in speech quality, speech
recognition and speaker recognition tasks in a general setting.
We would like to acknowledge the detailed comments of the
reviewers which helped us to improve the presentation of the
paper in the revised version.
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